跳至內容

極值

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

在數學中,極值(extremum)是極大值(maximum)與極小值(minimum)的統稱,意指在一個上函數取得最大值或最小值的點的函數值。而使函數取得極值的點(的橫坐標)被稱作極值點。這個域既可以是一個鄰域,又可以是整個函數域(這時極值稱為最值全域極值絕對極值)。

定義

  • 局部(相對)最大值:如果存在一個ε > 0,使得所有滿足|x-x*| < εx都有f(x*)≥ f(x),我們就把點x*對應的函數值f(x*)稱為一個函數f局部最大值。從函數圖像上看,局部最大值就像是山頂。
  • 局部(相對)最小值:如果存在一個ε > 0,使得所有滿足|x-x*| < εx都有f(x*)≤ f(x),我們就把點x*對應的函數值f(x*)稱為一個函數f局部最小值。從函數圖像上看,局部最小值就像是山谷的底部。
  • 全域(絕對)最大值:如果點x*對於任何x都滿足f(x*)≥ f(x),則點f(x*)稱為全域最大值。
  • 全域(絕對)最小值:如果點x*對於任何x都滿足f(x*)≤ f(x),則點f(x*)稱為全域最小值。

極值的概念不僅僅限於定義在實數上的函數。定義在任何集合上的實數值函數都可以討論其最大最小值。為了定義局部極值,函數值必須為實數,同時此函數的定義域上必須能夠定義鄰域。鄰域的概念使得在x的定義域上可以有|x - x*| < ε

局部最大值(最小值)也被稱為極值(或局部最佳值),全域最大值(最小值)也被稱為最值(或全域最佳值)。

求極值的方法

求全域極值是最佳化方法的目的。對於一元二階可導函數,求極值的一種方法是求駐點(亦稱為靜止點,停留點,英語:stationary point),也就是求一階導數為零的點。如果在駐點的二階導數為正,那麼這個點就是局部最小值;如果二階導數為負,則是局部最大值;如果為零,則還需要進一步的研究。

一般地,如果在駐點處的一階、二階、三階……直到N階導數都是零,而N+1階導數不為零,則當N奇數且N+1階導數為正時,該點為極小值;當N是奇數且N+1階導數為負時,該點為極大值;如果N是偶數,則該點不是極值。

如果這個函數定義在一個有界區域內,則還要檢查局域的邊界點。如果函數在定義域內存在不可導點,則這些不可導點也可能是極值點。

例子

  • 函數有惟一最小值,在x = 0 處取得。
  • 函數沒有最值,也沒有極值,儘管其一階導數x = 0處也為0。因為其二階導數(6x)在該點也是0,但三階導數不是零。
  • 函數cos(x)有無窮多個最大值,在x =0, ±2π, ±4π, ...,與無窮多個最小值 在x =±π, ±3π ... .

求函數的極值時還應當考慮其不可導點,即導數不存在的點。如函數y=|x|中0處的導數不存在,事實上從圖像上也能看出這一點來。而且0就是該函數的一個極小值。

多變量函數

對於多變量函數(多元函數),同樣存在在極值點的概念。其定義為:

在點鄰域內有定義,若對於所有去心鄰域的點,都有,則稱的極大值;反之,則為極小值[1]

此外,也有鞍點的概念。

參見

註腳

  1. ^ 不同文獻對此定義尚未統一。在部分文獻中,此定義又稱「絕對極值點」,與「≥」、「≤」的定義相區別