以下的列表列出了許多函數的導數。f 和g是可微函數,而別的皆為常數。用這些公式,可以求出任何初等函數的導數。
( sin x ) ′ = lim h → 0 sin ( x + h ) − sin x h = lim h → 0 sin x cos h + cos x sin h − sin x h = lim h → 0 ( sin x cos h − 1 h + cos x sin h h ) = cos x {\displaystyle {\begin{aligned}(\sin x)'&=\lim _{h\to 0}{\frac {\sin(x+h)-\sin x}{h}}\\&=\lim _{h\to 0}{\frac {\sin x\cos h+\cos x\sin h-\sin x}{h}}\\&=\lim _{h\to 0}(\sin x{\frac {\cos h-1}{h}}+\cos x{\frac {\sin h}{h}})\\&=\cos x\end{aligned}}}
( cos x ) ′ = lim h → 0 cos ( x + h ) − cos x h = lim h → 0 cos x cos h − sin x sin h − cos x h = lim h → 0 ( cos x cos h − 1 h − sin x sin h h ) = − sin x {\displaystyle {\begin{aligned}(\cos x)'&=\lim _{h\to 0}{\frac {\cos(x+h)-\cos x}{h}}\\&=\lim _{h\to 0}{\frac {\cos x\cos h-\sin x\sin h-\cos x}{h}}\\&=\lim _{h\to 0}(\cos x{\frac {\cos h-1}{h}}-\sin x{\frac {\sin h}{h}})\\&=-\sin x\end{aligned}}}
( tan x ) ′ = ( sin x cos x ) ′ = ( sin x ) ′ cos x − sin x ( cos x ) ′ cos 2 x = cos 2 x + sin 2 x cos 2 x = 1 cos 2 x = sec 2 x {\displaystyle {\begin{aligned}(\tan x)'&=({\frac {\sin x}{\cos x}})'\\&={\frac {(\sin x)'\cos x-\sin x(\cos x)'}{\cos ^{2}x}}\\&={\frac {\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}}\\&={\frac {1}{\cos ^{2}x}}=\sec ^{2}x\end{aligned}}}
( cot x ) ′ = ( cos x sin x ) ′ = ( cos x ) ′ sin x − cos x ( sin x ) ′ sin 2 x = − sin 2 x − cos 2 x sin 2 x = − 1 sin 2 x = − csc 2 x {\displaystyle {\begin{aligned}(\cot x)'&=({\frac {\cos x}{\sin x}})'\\&={\frac {(\cos x)'\sin x-\cos x(\sin x)'}{\sin ^{2}x}}\\&={\frac {-\sin ^{2}x-\cos ^{2}x}{\sin ^{2}x}}\\&=-{\frac {1}{\sin ^{2}x}}=-\csc ^{2}x\end{aligned}}}
( sec x ) ′ = ( 1 cos x ) ′ = sin x cos 2 x = sec x tan x {\displaystyle {\begin{aligned}(\sec x)'&=({\frac {1}{\cos x}})'\\&={\frac {\sin x}{\cos ^{2}x}}\\&=\sec x\tan x\end{aligned}}}
( csc x ) ′ = ( 1 sin x ) ′ = − cos x sin 2 x = − csc x cot x {\displaystyle {\begin{aligned}(\csc x)'&=({\frac {1}{\sin x}})'\\&={\frac {-\cos x}{\sin ^{2}x}}\\&=-\csc x\cot x\end{aligned}}}
( arcsin x ) ′ = 1 cos ( arcsin x ) ⇔ sin ( arcsin x ) = x ⇔ cos ( arcsin x ) ( arcsin x ) ′ = 1 = 1 1 − sin 2 ( arcsin x ) = 1 1 − x 2 ( | x | < 1 ) {\displaystyle {\begin{aligned}(\arcsin x)'&={\frac {1}{\cos(\arcsin x)}}\Leftrightarrow \sin(\arcsin x)=x\Leftrightarrow \cos(\arcsin x)(\arcsin x)'=1\\&={\frac {1}{\sqrt {1-\sin ^{2}(\arcsin x)}}}\\&={\frac {1}{\sqrt {1-x^{2}}}}\ \ (\left|x\right|<1)\end{aligned}}}
( arccos x ) ′ = 1 − sin ( arccos x ) ⇔ cos ( arccos x ) = x ⇔ − sin ( arccos x ) ( arccos x ) ′ = 1 = − 1 1 − cos 2 ( arccos x ) = − 1 1 − x 2 ( | x | < 1 ) {\displaystyle {\begin{aligned}(\arccos x)'&={\frac {1}{-\sin(\arccos x)}}\Leftrightarrow \cos(\arccos x)=x\Leftrightarrow -\sin(\arccos x)(\arccos x)'=1\\&=-{\frac {1}{\sqrt {1-\cos ^{2}(\arccos x)}}}\\&=-{\frac {1}{\sqrt {1-x^{2}}}}\ \ (\left|x\right|<1)\end{aligned}}}
( arctan x ) ′ = 1 sec 2 ( arctan x ) ⇔ tan ( arctan x ) = x ⇔ sec 2 ( arctan x ) ( arctan x ) ′ = 1 = 1 1 + tan 2 ( arctan x ) = 1 1 + x 2 {\displaystyle {\begin{aligned}(\arctan x)'&={\frac {1}{\sec ^{2}(\arctan x)}}\Leftrightarrow \tan(\arctan x)=x\Leftrightarrow \sec ^{2}(\arctan x)(\arctan x)'=1\\&={\frac {1}{1+\tan ^{2}(\arctan x)}}\\&={\frac {1}{1+x^{2}}}\end{aligned}}}
( arccot x ) ′ = 1 − csc 2 ( arccot x ) ⇔ cot ( arccot x ) = x ⇔ − csc 2 ( arccot x ) ( arccot x ) ′ = 1 = − 1 1 + cot 2 ( arccot x ) = − 1 1 + x 2 {\displaystyle {\begin{aligned}(\operatorname {arccot} x)'&={\frac {1}{-\csc ^{2}(\operatorname {arccot} x)}}\Leftrightarrow \cot(\operatorname {arccot} x)=x\Leftrightarrow -\csc ^{2}(\operatorname {arccot} x)(\operatorname {arccot} x)'=1\\&=-{\frac {1}{1+\cot ^{2}(\operatorname {arccot} x)}}\\&=-{\frac {1}{1+x^{2}}}\end{aligned}}}
( arcsec x ) ′ = 1 sec ( arcsec x ) tan ( arcsec x ) ⇔ sec ( arcsec x ) = x ⇔ sec ( arcsec x ) tan ( arcsec x ) ( arcsec x ) ′ = 1 = 1 | x | sec 2 ( arcsec x ) − 1 = 1 | x | x 2 − 1 ( | x | > 1 ) {\displaystyle {\begin{aligned}(\operatorname {arcsec} x)'&={\frac {1}{\sec(\operatorname {arcsec} x)\tan(\operatorname {arcsec} x)}}\Leftrightarrow \sec(\operatorname {arcsec} x)=x\Leftrightarrow \sec(\operatorname {arcsec} x)\tan(\operatorname {arcsec} x)(\operatorname {arcsec} x)'=1\\&={\frac {1}{|x|{\sqrt {\sec ^{2}(\operatorname {arcsec} x)-1}}}}\\&={\frac {1}{|x|{\sqrt {x^{2}-1}}}}\ \ (\left|x\right|>1)\end{aligned}}}
( arccsc x ) ′ = 1 − csc ( arccsc x ) cot ( arccsc x ) ⇔ csc ( arccsc x ) = x ⇔ − csc ( arccsc x ) cot ( arccsc x ) ( arccsc x ) ′ = 1 = − 1 | x | csc 2 ( arcsec x ) − 1 = − 1 | x | x 2 − 1 ( | x | > 1 ) {\displaystyle {\begin{aligned}(\operatorname {arccsc} x)'&={\frac {1}{-\csc(\operatorname {arccsc} x)\cot(\operatorname {arccsc} x)}}\Leftrightarrow \csc(\operatorname {arccsc} x)=x\Leftrightarrow -\csc(\operatorname {arccsc} x)\cot(\operatorname {arccsc} x)(\operatorname {arccsc} x)'=1\\&=-{\frac {1}{|x|{\sqrt {\csc ^{2}(\operatorname {arcsec} x)-1}}}}\\&=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}\ \ (\left|x\right|>1)\end{aligned}}}
d Γ ( x ) d x = ∫ 0 ∞ e − t t x − 1 ln t d t {\displaystyle {\frac {{\mbox{d}}\Gamma (x)}{{\mbox{d}}x}}=\int _{0}^{\infty }e^{-t}t^{x-1}\ln \!t{\mbox{d}}t}