跳转到内容

Γ函数

本页使用了标题或全文手工转换
维基百科,自由的百科全书
Γ函数在实数定义域上的函数图形

数学中,函数伽玛函数;Gamma函数),是阶乘函数在实数复数域上的扩展。如果正整数,则:

根据解析延拓原理,伽玛函数可以定义在除去非正整数的整个复数域上:

数学家勒让德首次使用了希腊字母Γ作为该函数的记号。在机率论组合数学中此函数很常用。

定义

函数可以通过欧拉(Euler)第二类积分定义:

复数,我们要求

函数还可以通过对泰勒展开解析延拓到整个复平面

这样定义的函数在全平面除了以外的地方解析。

函数也可以用无穷乘积的方式表示:

这说明是亚纯函数,而是全纯函数。

历史动机

Γ函数本身可以被看作是一个下列插值问题的解:

‘找到一个光滑曲线连接那些由 所给定的点,并要求要为正整数’

由前几个的阶乘清楚地表明这样的曲线是可以被画出来的,但是我们更希望有一个精确的公式去描述这个曲线,并让阶乘的操作不会依赖于值的大小。而最简单的阶乘公式 不能直接应用在值为分数的时候,因为它被限定在值为正整数而已。相对而言,并不存在一个有限的关于加总、乘积、幂次、指数函数或是对数函数可以表达 ,但是是有一个普遍的公式借由微积分的积分与极限去表达阶乘的,而 Γ函数就是那个公式。[1]

阶乘有无限多种的连续扩张方式将定义域扩张到非整数:可以通过任何一组孤立点画出无限多的曲线。Γ函数是实务上最好的一个选择,因为是解析的(除了非正整数点),而且它可以被定义成很多种等价形式。然而,它并不是唯一一个扩张阶乘意义的解析函数,只要给予任何解析函数,其在正整数上为零,像是 ,会给出其他函数有著阶乘性质。

无穷乘积

函数可以用无穷乘积表示:

其中欧拉-马歇罗尼常数

Γ积分

递推公式

函数的递推公式为:

对于正整数,有

可以说函数是阶乘的推广。

递推公式的推导

我们用分部积分法来计算这个积分:

时,。当趋于无穷大时,根据洛必达法则,有:

.

因此第一项变成了零,所以:

等式的右面正好是, 因此,递推公式为:

.

重要性质

  • 时,
  • 欧拉反射公式(余元公式):
.
由此可知当时,.
  • 乘法定理:
.
  • 此外:
.
  • 使用乘法定理推导的关系:

[2]

此式可用来协助计算t分布机率密度函数、卡方分布机率密度函数、F分布机率密度函数等的累计机率。

  • 极限性质

对任何实数α

斯特灵公式

Γ函数与斯特灵公式
(蓝色)、(橘色),数字越大会越趋近。但会在负值则会因为出现虚数而无法使用。

斯特灵公式能用以估计函数的增长速度。公式为:

其中e约等于2.718281828459。

特殊值

连分数表示

伽马函数也可以在复数域表示为两个连分数之和[3]

导数

Γ函数的微分
Γ函数(蓝色)、Γ函数的微分(橘色),其中,大于50与小于-20的部分被截掉。

对任何复数z,满足 Re(z) > 0,有

于是,对任何正整数 m

其中γ是欧拉-马歇罗尼常数

复数值

解析延拓

Γ函数的绝对值函数图形

注意到在函数的积分定义中若取为实部大于零之复数、则积分存在,而且在右半复平面上定义一个全纯函数。利用函数方程

并注意到函数在整个复平面上有解析延拓,我们可以在时设

从而将函数延拓为整个复平面上的亚纯函数,它在有单极点,留数为

程式实现

许多程式语言或试算表软体有提供Γ函数或对数的Γ函数,例如EXCEL。而对数的Γ函数还要再取一次自然指数才能获得Γ函数值。例如在EXCEL中,可使用GAMMALN函数,再用EXP[GAMMALN(X)],即可求得任意实数的伽玛函数的值。

  • 例如在EXCEL中:EXP[GAMMALN(4/3)]=0.89297951156925

而在没有提供Γ函数的程式环境中,也能够过泰勒级数或斯特灵公式等方式来近似,例如Robert H. Windschitl在2002年提出的方法,其在十进制可获得有效数字八位数的精确度[4],已足以填满单精度浮点数的二进制有效数字24位:

参见

参考文献

  1. ^ P. J., Davis. Leonhard Euler's Integral: A Historical Profile of the Gamma Function. American Mathematical Monthly. 1959 [2023-01-01]. doi:10.2307/2309786. (原始内容存档于2023-01-01). 
  2. ^ Mada, L. Relations of the Gamma function. R code on Github. Code publicly available on Github [Personal Research]. 2020-04-24 [2020-04-24]. (原始内容存档于2021-04-02). Relations of the Gamma function 
  3. ^ Exponential integral E: Continued fraction representations. [2023-01-01]. (原始内容存档于2022-11-09). 
  4. ^ Viktor T. Toth. "Programmable Calculators: Calculators and the Gamma Function". 2006 [2018-11-18]. (原始内容存档于2007-02-23). 

外部链接