跳至內容

四乙基銨鹽

維基百科,自由的百科全書
四乙基銨陽離子
IUPAC名
N,N,N-Triethylethanaminium
別名 Tetraethylazanium
識別
CAS號 66-40-0  checkY
PubChem 5413
ChemSpider 5220
SMILES
 
  • CC[N+](CC)(CC)CC
InChI
 
  • 1/C8H20N/c1-5-9(6-2,7-3)8-4/h5-8H2,1-4H3/q+1
InChIKey CBXCPBUEXACCNR-UHFFFAOYAM
ChEBI 44296
IUPHAR配體 2343
性質
化學式 C8H20N+
莫耳質量 130.25 g·mol⁻¹
相關物質
其他陽離子 四甲基銨鹽
四丁基銨鹽
若非註明,所有數據均出自標準狀態(25 ℃,100 kPa)下。

四乙基銨陽離子 ,化學式N(C
2
H
5
)+
4
NEt+
4
,是一種季銨陽離子,由四個乙基陽離子組成。四乙基銨鹽則是四乙基銨陽離子形成的鹽。它是研究實驗室中用來製備無機離子脂質鹽的一種平衡離子。它的用處類似四丁基銨鹽英語tetrabutylammonium,不過四乙基銨鹽的親脂性更低,更易結晶。

製備

四乙基氯化銨可以由三乙胺和氯乙烷反應而成。

Et3N + EtX → Et4N+X

這個方法對四乙基碘化銨 (X = I)也適用。[1]

大部分四乙基銨鹽都是由複分解反應製備的。舉個例子,四乙基高氯酸銨是由可溶的四乙基溴化銨高氯酸鈉在水中反應,形成不溶的四乙基高氯酸銨沉澱而成的:[2]

Et4N+Br + Na+[ClO4] → Na+Br + Et4N+[ClO4]

其它例子包括四乙基氰化銨 (Et4NCN)[3]和三氯合錫(II)酸四乙基銨 (Et4NSnCl3)。[4]在某些情況下,陰離子是不能在水中產生的,像是四面體型的 [NiCl4]2−[5]

性質

四乙基銨陽離子的有效半徑是 ~0.45 nm,可以和水合的 K+ 離子比較。[6]四乙基銨陽離子的離子半徑是 0.385 nm,而這個離子的多個熱力學參數已被記錄。[7][8]

用處

四甲基銨鹽的主要化學特徵是它們能夠參與涉及相轉移的過程,例如相轉移催化劑[9]

四乙基氟硼酸銨和四乙基甲磺酸銨可以用作雙電層電容器的有機電解質[10]

四乙基鹵化銨和四乙基氫氧化銨可以用來製造沸石[11]

參見

參考資料

  1. ^ A. A. Vernon and J. L. Sheard (1948). "The solubility of tetraethylammonium iodide in benzene-ethylene dichloride mixtures." J. Am. Chem. Soc. 70 2035-2036.
  2. ^ I. M. Kolthoff and J. F. Coetzee (1957). "Polarography in acetonitrile. I. Metal ions which have comparable polarographic properties in acetonitrile and in water." J. Am. Chem. Soc. 79 870-874.
  3. ^ R. L. Dieck, E. J. Peterson, A. Galliart, T. M. Brown, T. Moeller "Tetraethylammonium, Tetraphenylarsonium, and Ammonium Cyanates and Cyanides" Inorganic Syntheses, 1976, Vol. 16, pp. 131–137. doi:10.1002/9780470132470.ch36
  4. ^ G. W. Parshall "Tetraethylammonium Trichlorogermanate(1−) and Trichlorostannate(1−)" Inorganic Syntheses, 1974, Vol. 15, pp. 222–225. doi:10.1002/9780470132463.ch48
  5. ^ Naida S. Gill, F. B. Taylor "Tetrahalo Complexes of Dipositive Metals in the First Transition Series" Inorganic Syntheses, 1967, Vol. 9, pp. 136–142. doi:10.1002/9780470132401.ch37
  6. ^ C. M. Armstrong (1971). "Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons." J. Gen. Physiol. 58 413-437.
  7. ^ D. H. Aue, H. M. Webb and M. T. Bowers (1976). "A thermodynamic analysis of solvation effects on the basicities of alkylamines. An electrostatic analysis of substituent effects." J. Am. Chem. Soc. 98 318–329.
  8. ^ J. Palomo and P. N. Pintauro (2003). "Competitive absorption of quaternary ammonium and alkali metal cations into a Nafion cation-exchange membrane." J. Membrane Sci. 215 103-114.
  9. ^ C. M. Starks, C. L. Liotta and M. Halpern (1994). "Phase-Transfer Catalysis: Fundamentals, Applications, and Industrial Perspectives." Springer.
  10. ^ J. Huang, B. G. Sumpter and V. Meunier (2008). "A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes." Chem. Eur. J. 14 6614-6626.
  11. ^ US patent 5139759A,「Synthesis of zeolite beta」