跳转到内容

镍化合物

这是一篇优良条目,点击此处获取更多信息。
维基百科,自由的百科全书
从左至右分别为[Ni(NH
3
)
6
]2+
、[Ni(C2H4(NH2)2)₃]2+[NiCl
4
]2−
[Ni(H
2
O)
6
]2+
四种镍(II)的配离子。

镍化合物和其它元素形成的化合物。镍在化合物中,最稳定的价态是+2价,此外,还存在+3、+4两种高价态和+1、0、-1、-2四种低价态。镍的配位化合物是多彩的,不同配体能使镍(II)产生不同的颜色,如最常见的[Ni(H2O)6]2+是以水为配体的配离子,它显绿色。

无机化合物

氧化物和氢氧化物

镍可以形成NiO、Ni2O3等二元氧化物和多元氧化物,后者有时称作镍酸盐英语Oxonickelates

镍最常见的氢氧化物Ni(OH)2和NiO(OH)。它们存在于镍镉电池镍氢电池中。Ni(OH)2可由硝酸镍氢氧化钾反应得到:[1]

Ni(NO3)2 + 2 KOH → Ni(OH)2↓ + 2 KNO3

硫属化合物

镍和可以形成多种二元化合物。如镍的硫化物有NiS、NiS2、Ni3S4、Ni7S6等数种,其中NiS2具有黄铁矿结构,Ni3S4具有尖晶石结构。镍的三元硫属化物也有很多报道,例如橙黄色的KNi2S2[2]、金色的K2Ni3Se4[3],以及金绿色带有金属光泽的Rb2Ni3S4[4]等。

镍可以形成两种钋化物:NiPo和NiPo2[5]

镍最常见的硫属含氧酸盐是硫酸镍(NiSO4),它可以形成黄色的无水物、蓝绿色的六水合物和暗绿色的七水合物。[1]其中,无水物由水合物直接加热脱水得到。四方晶系的六水合物可在30.7°C至53.8°C的水溶液中结晶得到,在此温度之上得到正交晶系的六水合物,在此温度之下得到七水合物。X射线衍射表明,六水合物中存在八面体的[Ni(H2O)6]2+,并由氢键SO2−
4
相连。[6]碳酸镍硒酸溶液反应,从溶液中可以结晶出绿色的六水合硒酸镍(NiSeO4·6H2O)。硒酸镍和硫酸镍都是易溶于水的镍盐。[1]

磷属化合物

叠氮化镍(Ni(N3)2)是镍和氮形成的化合物,易爆。它由碳酸镍和叠氮酸反应得到。它受热分解为金属粉和氮气[7]它可以以二水合物(Ni(N3)2·2H2O)和碱式盐(Ni(OH)N3)的形式存在。[8]氨基镍(Ni(NH2)2)是暗红色固体,分子中含有被12个氨基围绕的Ni6簇。[9]取代胺基镍也是已知的。

四羰基镍(Ni(CO)4)和一氧化氮作用,生成浅蓝色的亚硝基配合物Ni(NO)(NO2),它是一种易自燃的活泼化合物。[10]

Ni(CO)4 + 4 NO → Ni(NO)(NO2) + N2O + 4 CO

硝酸镍(Ni(NO3)2)是镍的硝酸盐,存在无水物水合物,水合物以墨绿色的六水合物最为常见。硝酸镍易溶于水。硝酸镍溶液和氨反应,生成硝酸六氨合镍([Ni(NH3)6](NO3)2[11],和水合肼反应,生产硝酸三肼合镍([Ni(N2H4)3](NO3)2[12]

镍有多种磷化物,最常见的是Ni2P。由于磷化物的结构,它比硫化镍具有更高的催化活性。Ni2P可用于催化加氢脱硫、加氢脱氮等反应。[13]

镍和三氟化磷在100°C和350 atm下反应,可以得到四(三氟化磷)镍,该化合物中镍原子的氧化态为0。三苯基膦也能和镍形成若干种配合物。[10]镍盐和KPH2反应,可以制得氨基镍的同类物Ni(PH2)2。该化合物可溶于KPH2的液氨溶液,生成配合物K2[Ni(PH2)4]。[10]

磷酸氢二钠和镍盐溶液反应,生成绿色的八水合磷酸镍(Ni3(PO4)2·8H2O),而磷酸铵和镍盐溶液反应,得到的是磷酸镍铵(NH4NiPO4)。[10]

卤化物

六水合氯化镍

镍(II)的四种卤化物都是已知的,它们都存在无水物和水合物。氟化镍(NiF2)是黄色固体,具有金红石结构,可以形成三水合物NiF2·3H2O。[14]四水合物也是已知的。[15]

氯化镍(NiCl2)是黄色晶体,具有CdCl2结构。它可以形成六水合物(NiCl2·6H2O),在29°C以上结晶,可以得到四水合物(NiCl2·4H2O),在64°C以上结晶,可以形成二水合物(NiCl2·2H2O)。[14]

溴化镍(NiBr2)是黄色晶体,具有CdCl2结构。它可以形成六水合物(NiBr2·6H2O)。[14]在29°C以上结晶,得到三水合物(NiBr2·3H2O)和二水合物(NiBr2·2H2O)。[16]在2°C以下从溶液中结晶,得到九水合物(NiBr2·9H2O)。[14]二溴化六氨合镍(II)(Ni(NH3)6Br2)是蓝色至紫色的晶体,难溶于低温下的液氨中,但可溶于沸腾的液氨中。此外,一氨、二氨和二配合物也是已知的。[14]

碘化镍(NiI2)是黑色晶体,具有CdCl2结构。它可以形成绿色的六水合物(NiI2·6H2O)、棕色的二氨合物(NiI2•2NH3)和蓝紫色的六氨合物。[14]

高价镍的卤化物仅已知氟镍化合物。

镍(II)的卤配合物,如四氯合镍酸盐英语tetrachloronickelate[NiCl
4
]2−
)、四溴合镍酸盐英语tetrabromonickelate[NiBr
4
]2−
)和四碘合镍酸盐英语tetraiodonickelate[NiI
4
]2−
)都是已知的。[17]

其它

镍在饱和二氧化碳的水中电解,可以得到碳酸镍(NiCO3);它也可由氯化镍和碳酸氢钠反应得到。Ni2MO4(M=Si, Ge, Sn)的盐是已知的,它们可由一氧化镍和相应的二氧化物在高温下反应得到[18][19]。偏锡酸镍(NiSnO3)可由其二水合物在127 °C分解得到。[19]Ni[Pb(OH)6]由Na2[Pb(OH)6]和Ni(NO3)2在85%乙醇中反应得到。[19]

镍的有机酸盐

镍可以和有机酸成盐,在大部分的这类化合物中,有机酸的酸根作为配体与镍配位。镍的有机酸盐数量很多,一些已知结构的化合物参见下表:

化学式 名称 分子量 晶系 晶胞参数(Å) ° V Z 密度 颜色 参考文献
a b c β Å3 g/cm3
Ni(HCOO)
2
 · 2H2O
甲酸镍二水合物 单斜 8.60 7.06 9.21 96°50′ 4 [20]
[Ni20{(C5H6O4)20(H2O)8}] • 40H2O 戊二酸镍水合物 立方 16.581 4559 浅绿色 [21]
Ni
9
(OH)
2
(H
2
O)
6
(C
4
H
5
O
2
)
8
 · 2H2O
碱式环丙酸镍水合物 正交 14.810 24.246 24.607 8836 4 1.554 亮绿 [22]
Ni5(OH)2(C4H5O2)8 碱式环丙酸镍 正交 19.406 18.466 21.579 90 7733 8 2.172 浅绿 [22]
[Ni3(CF3COO)6(CF3COOH)6](CF3COOH) 三氟乙酸氢镍三氟乙酸合物 三方 13.307 53.13 8148 6 2.205 祖母绿 [23]
[Ni3(CF3COO)6(CF3COOH)2(H2O)4](CF3COOH)2 三氟乙酸氢镍三氟乙酸合物水合物 三斜 9.12 10.379 12.109 α=84.59° β=72.20° γ=82.80° 1080.9 1 2.124 祖母绿 [23]
K2[Ni(C6H5O7)(H2O)2]2·4H2O 柠檬酸镍钾四水合物 三斜 6.729 9.100 10.594 α=94.86 β=100.76 γ=103.70 613.5 1 1.942 绿色 [24]
K2[Ni2(C6H5O7)2(H2O)4]·4H2O 四水合[四水(μ-柠檬酸根-k4O:O',O'',O''')合镍(II)酸钾] 717.94 单斜 10.616 13.006 9.0513 93.09 1247.8 2 1.911 绿色 [25]
N(CH3)4[Ni4(C6H4O7)3(OH)(H2O)]·18H2O 碱式柠檬酸镍四甲基铵水合物 三斜 11.84 14.29 20.93 96.16 β=106.36 γ=94.89 3352 1 浅绿色 [24][26]
Na2[Ni(C6H4O7)] • 2H2O 柠檬酸镍钠 绿色 [27]
(NH4)2[Ni(HCit) • 2H2O]2 • 2H2O 柠檬酸镍铵 639.79 三斜 6.407 9.471 9.6904 α=105.064 β=91.99 γ=89.33 567.5 1 1.872 绿色 [28]
(NH4)4[Ni(HCit)2] • 2H2O 二柠檬酸根合镍(II)酸四铵 545.10 单斜 9.361 13.496 9.424 115.476 1074.9 2 1.684 [28]
(NH4)2[Ni(H2O)6][Ti(H2cit)3]2·6H2O 柠檬酸二氢钛六水合镍铵六水合物 1547.43 六方 15.562 7.690 1605.5 1 1.600 浅绿 [29]
[Ni(C5H7O2)2]3 乙酰丙酮镍 256.91 正交 23.23 9.64 15.65 3505 4 1.46 绿色 [30]
Ni[C4O4] • 2H2O 方酸镍 立方 8.068 8.068 8.068 90° 525 1.93 绿色 [31]
Ni[C4O4] • 8H2O 方酸镍八水合物 428.93 单斜 10.288 6.372 12.852 106.98 805.8 2 1.768 绿色 [32]
Ni[C5O5] • 3H2O 环戊烯五酸镍三水合物 正交 绿色 [33]
K2[Ni(C5O5)2(H2O)2] • 4H2O 环戊烯五酸镍钾四水合物 525.11 单斜 8.015 6.660 16.489 90.20 880.1 2 1.982 绿色 [34]
Ni(C5H5COO)2 • 2H2O 苯甲酸镍二水合物 354.98 单斜 6.1341 34.180 6.9793 95.331 1457.0 4 1.618 浅绿 [35]
Ni[C6H4(COO)(COOH)]2 • 6H2O 邻苯二甲酸氢镍六水合物 单斜 16.024 5.574 12.500 113.42 2 1.611 [36]
Ni[C6H4(COO)2] • 4H2O 对苯二甲酸镍四水合物 绿色 [37]
Ni(OH)[C6H4(COO)(COOH)] • H2O 碱式对苯二甲酸镍水合物 绿色 [37]
镍化合物可以用丁二酮肟试剂来检验,水溶液的镍离子可以和丁二酮肟形成桃红色的配合物,这一反应是特征性的,不受其它常见离子干扰。[38]左:丁二酮肟试剂;中:Ni2+溶液;右:含Ni2+和其它多种金属离子的混合溶液

有机化合物

四羰基镍(Ni(CO)4)是无色易挥发的剧毒液体,可用于金属镍的提纯[39]。它可用于制备含Ni=C双键的卡宾配合物;或与烯丙基卤化物反应,得到π-烯丙基配合物。[40]二茂镍(Ni(C5H5)2)是镍的环戊二烯配合物,为绿色晶体,可由氯化六氨合镍和环戊二烯基钠反应得到:[41]

[Ni(NH3)6]Cl2 + 2 NaC5H5 → Ni(C5H5)2 + 2 NaCl + 6 NH3

二茂镍可以参与醇(酚)解反应,如与五氟苯酚亚铊反应,生成镍的酚配合物Tl2[Ni(OArF)4]。[42]含取代基的二(镍杂环戊二烯)铁于2020年被合成出来。[43]

参考文献

引用

  1. ^ 1.0 1.1 1.2 朱文祥. 无机化合物制备手册. 化学工业出版社, 2006. pp 352-353 (X-4); pp 713 (XVI-142, XVI-143); pp 741 (XVI-236). ISBN 7-5025-8537-0
  2. ^ Hlukhyy, Viktor; Trots, Dmytro; Fässler, Thomas F. First-Order Phase Transition in BaNi2Ge2 and the Influence of the Valence Electron Count on Distortion of the Structure Type. Inorganic Chemistry. 2017-01-13, 56 (3): 1173. PMID 28085271. doi:10.1021/acs.inorgchem.6b02190. 
  3. ^ Bronger, W.; Eyck, J.; Rüdorff, W.; Stöussel, A. Über Thio- und Selenoniccolate und -palladate der schweren Alkalimetalle. Zeitschrift für anorganische und allgemeine Chemie. July 1970, 375 (1): 1–7. doi:10.1002/zaac.19703750102. 
  4. ^ Hasegawa, Takumi; Inui, Mitsutaka; Hondou, Katsuhiro; Fujiwara, Yishihiro; Kato, Tetsuya; Iio, Katsunori. Raman spectroscopy on ternary transition metal chalcogenide . Journal of Alloys and Compounds. February 2004, 364 (1–2): 199–207. doi:10.1016/S0925-8388(03)00503-6. 
  5. ^ Meyer, R. J. Nickel und Polonium. Gmelins Handbuch Der Anorganischen Chemie - Nickel: Teil B — Lieferung 2. Verbindungen bis Nickel-Polonium. Berlin: Springer-Verlag. 1974: 764 [2017-08-30]. ISBN 9783662133026. (原始内容存档于2021-05-09) (德语). 
  6. ^ Wells, A. F. (1984). Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.
  7. ^ Sood, R. K.; Nya, A. E.; Etim, E. S. (December 1981). "Thermal decomposition of nickel azide". Journal of Thermal Analysis. 22 (2): 231–237. DOI:10.1007/BF01915269.
  8. ^ IROM, I I (1 January 2001). "Photolysis of nickel hydroxy azide.". Global Journal of Pure and Applied Sciences. 7 (1): 73–80. doi:10.4314/gjpas.v7i1.16208.
  9. ^ Tenten, A.; Jacobs, H. (June 1991). "Isolierte Ni6(NH2)12-Einheiten in Nickel(II)-Amid". Journal of the Less Common Metals. 170 (1): 145–159. doi:10.1016/0022-5088(91)90060-H.
  10. ^ 10.0 10.1 10.2 10.3 申泮文 等. 无机化学丛书 第九卷 锰分族 铁系 铂系. 科学出版社, 2017. ISBN 9787030305459
  11. ^ A. Migdal-Mikuli et al. Thermal decomposition of [Mg(NH3)6](NO3)2, [Ni(NH3)6](NO3)2 and [Ni(ND3)6](NO3)2. Thermochimica Acta, 2004. 419(s 1–2):223–229
  12. ^ 陈太林. 硝酸肼镍制备工艺研究. 火工品, 1998(4): 35-36
  13. ^ Wang X, Clark P, Oyama S T. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides[J]. Journal of Catalysis, 2002, 208(2): 321-331. DOI: 10.1006/jcat.2002.3604
  14. ^ 14.0 14.1 14.2 14.3 14.4 14.5 Mellor, J. W. Nickel. A COMPREHENSIVE TREATISE ON INORGANIC AND THEORETICAL CHEMISTRY VOLUME XV Ni Ru, Rh Pd, Os, Ir. May 1936 [2016-05-31]. (原始内容存档于2017年2月7日).  (pages accessible by changing number on url)
  15. ^ Haynes, W. M., ed. (2014). CRC Handbook of Chemistry and Physics (95 ed.). pp. 4–77–4–78. ISBN页面存档备份,存于互联网档案馆9781482208672页面存档备份,存于互联网档案馆).
  16. ^ Nicholls p1126-1127
  17. ^ Atanasov, Mihail; Rauzy, Cedrick; Baettig, Pio; Daul, Claude. Calculation of spin-orbit coupling within the LFDFT: Applications to [NiX4]2− (X=F, Cl, Br, I). International Journal of Quantum Chemistry. 2005, 102 (2): 119–131. ISSN 0020-7608. doi:10.1002/qua.20376. 
  18. ^ Chemical Thermodynamics of Nickel. Elsevier. 8 April 2005: 245– [2021-01-21]. ISBN 978-0-08-045754-3. (原始内容存档于2021-05-09). 
  19. ^ 19.0 19.1 19.2 Nickel: Alloys and compounds. sect. 1. The alloys of nickel. Verlag Chemie. 1966 [2021-01-21]. (原始内容存档于2021-05-09). 
  20. ^ Krogmann, Klaus; Mattes, Rainer. Die Kristallstruktur von Nickelformiat, . Zeitschrift für Kristallographie - Crystalline Materials. January 1963, 118 (1–6). doi:10.1524/zkri.1963.118.16.291 (德语). 
  21. ^ Guillou, Nathalie; Livage, Carine; Drillon, Marc; Férey, Gérard. The Chirality, Porosity, and Ferromagnetism of a 3D Nickel Glutarate with Intersecting 20-Membered Ring Channels. Angewandte Chemie International Edition. 2003-11-10, 42 (43): 5314–5317. doi:10.1002/anie.200352520. 
  22. ^ 22.0 22.1 Forster, Paul M; Yang, Zuag; Cheetham, Anthony K. Open framework metal monocarboxylates: nickel cyclopropionates containing 16- and 18-membered rings. Solid State Sciences. April 2003, 5 (4): 635–642. Bibcode:2003SSSci...5..635F. doi:10.1016/S1293-2558(03)00055-4. 
  23. ^ 23.0 23.1 Tokareva, A. O.; Tereshchenko, D. S.; Boltalin, A. I.; Troyanov, S. I. Acid Co(II) and Ni(II) trifluoroacetate complexes: Synthesis and crystal structure. Russian Journal of Coordination Chemistry. September 2006, 32 (9): 663–668. doi:10.1134/S1070328406090077. 
  24. ^ 24.0 24.1 Baker, Edward N.; Baker, Heather M.; Anderson, Bryan F.; Reeves, Roger D. Chelation of nickel(II) by citrate. The crystal structure of a nickel–citrate complex, . Inorganica Chimica Acta. January 1983, 78: 281–285. doi:10.1016/S0020-1693(00)86530-5. 
  25. ^ Yao, Hua-Gang; Huang, Jia-Na; Deng, Run-Kang; Yao, Zhi-Bang. Dipotassium tetraaquabis(μ-citrato-κ : ′, ′′, ′′′)nickelate(II) tetrahydrate. Acta Crystallographica Section E. 2013-08-17, 69 (9): m502–m503. PMC 3884440可免费查阅. PMID 24426997. doi:10.1107/S1600536813022630. 
  26. ^ Strouse, Jane; Layten, Steven W.; Strouse, Charles E. Structural studies of transition metal complexes of triionized and tetraionized citrate. Models for the coordination of the citrate ion to transition metal ions in solution and at the active site of aconitase. Journal of the American Chemical Society. January 1977, 99 (2): 562–572. PMID 830693. doi:10.1021/ja00444a041. 
  27. ^ Wang, Lian-Ying; Wu, Guo-Qing; Evans, David G. Synthesis and characterization of a layered double hydroxide containing an intercalated nickel(II) citrate complex. Materials Chemistry and Physics. July 2007, 104 (1): 133–140. doi:10.1016/j.matchemphys.2007.02.098. 
  28. ^ 28.0 28.1 Zhou, Zhao-Hui; Lin, Yi-Ji; Zhang, Hong-Bin; Lin, Guo-Dong; Tsai, Khi-Rui. SYNTHESES, STRUCTURES AND SPECTROSCOPIC PROPERTIES OF NICKEL(II) CITRATO COMPLEXES, AND . Journal of Coordination Chemistry. 2006-10-05, 42 (1–2): 131–141. doi:10.1080/00958979708045286. 
  29. ^ Deng, Yuan-Fu; Zhang, Hua-Lin; Hong, Qi-Ming; Weng, Wei-Zheng; Wan, Hui-Lin; Zhou, Zhao-Hui. Titanium-based mixed oxides from a series of titanium(IV) citrate complexes. Journal of Solid State Chemistry. November 2007, 180 (11): 3152–3159. Bibcode:2007JSSCh.180.3152D. doi:10.1016/j.jssc.2007.08.033. 
  30. ^ Bullen, G. J.; Mason, R.; Pauling, Peter. The Crystal and Molecular Structure of Bis(acetylacetonato)nickel (II). Inorganic Chemistry. April 1965, 4 (4): 456–462. doi:10.1021/ic50026a005. 
  31. ^ Habenschuss, Michael. An x-ray, spectroscopic, and magnetic study of the structure of nickel squarate dihydrate, . Journal of Chemical Physics. 1974, 61 (3): 852. Bibcode:1974JChPh..61..852H. doi:10.1063/1.1682025. 
  32. ^ Brach, I.; Rozière, J.; Anselment, B.; Peters, K. An X-ray structure determination of cobalt and nickel squarate octahydrate, (M=Ni,Co). Acta Crystallographica Section C. 1987-03-15, 43 (3): 458–460. doi:10.1107/S0108270187095386. 
  33. ^ West, Robert.; Niu, Hsien Ying. New Aromatic Anions. VI. Complexes of Croconate Ion with Some Divalent and Trivalent Metals. Journal of the American Chemical Society. September 1963, 85 (17): 2586–2588. doi:10.1021/ja00900a013. 
  34. ^ Chen, Hong-Yu; Fang, Qi; Xue, Gang; Yu, Wen-Tao. Polydi-μ2-aqua-di-μ5-croconato(2–)-nickel(II)dipotassium(I) tetrahydrate. Acta Crystallographica Section C. 2005-11-19, 61 (12): m535–m537. doi:10.1107/S0108270105036322. 
  35. ^ Vráblová, Anna; Falvello, Larry R.; Campo, Javier; Miklovič, Jozef; Boča, Roman; Černák, Juraj; Tomás, Milagros. Preparation, First Structure Analysis, and Magnetism of the Long-Known Nickel Benzoate Trihydrate - A Linear Ni···Ni···Ni Polymer and Its Parallels with the Active Site of Urease. European Journal of Inorganic Chemistry. February 2016, 2016 (6): 928–934. doi:10.1002/ejic.201501255. hdl:10261/148104. 
  36. ^ Adiwidjaja, G.; Küppers, H. Nickel dihydrogen diphthalate hexahydrate. Acta Crystallographica Section B. 1976-05-15, 32 (5): 1571–1574. doi:10.1107/S0567740876005840. 
  37. ^ 37.0 37.1 Sherif, Fawzy G. Heavy Metal Terephthalates. Industrial & Engineering Chemistry Product Research and Development. 1970-09-01, 9 (3): 408–412. doi:10.1021/i360035a026. 
  38. ^ Tschugaeff, L. Ueber ein neues, empfindliches Reagens auf Nickel. Berichte der deutschen chemischen Gesellschaft. 1905, 38 (3): 2520–2522 [2019-09-04]. ISSN 0365-9496. doi:10.1002/cber.19050380317. (原始内容存档于2019-09-04). 
  39. ^ Mond L, Langer K, Quincke F. Action of carbon monoxide on nickel. Journal of the Chemical Society. 1890: 749–753.
  40. ^ Martin F. Semmelhack and Paul M. Helquist (1988). "Reaction of Aryl Halides with π-Allylnickel Halides: Methallylbenzene". Org. Synth. 52: 115; Coll. Vol. 6: 161. 
  41. ^ Girolami, G. S.; Rauchfuss, T. B.; Angelici, R. J. Synthesis and Technique in Inorganic Chemistry. Mill Valley, CA: University Science Books. 1999. ISBN 0935702482. 
  42. ^ Zheng, BingNa; Miranda, Maria O.; DiPasquale, Antonio G.; Golen, James A.; Rheingold, Arnold L.; Doerrer, Linda H. Synthesis and Electronic Spectra of Fluorinated Aryloxide and Alkoxide [NiX4]2−Anions. Inorganic Chemistry. 2009, 48 (10): 4274–4276. ISSN 0020-1669. doi:10.1021/ic9003593. 
  43. ^ Zhe Huang, Yu Zheng, Wen‐Xiong Zhang, Shengfa Ye, Liang Deng, Zhenfeng Xi. Dinickelaferrocene: A Ferrocene Analogue with Two Aromatic Nickeloles Realized by Electron Back‐Donation from Iron. Angewandte Chemie International Edition. 2020-08-17, 59 (34): 14394–14398 [2020-08-26]. ISSN 1433-7851. doi:10.1002/anie.202007222 (英语). 

来源

  • Nichols, David. The chemistry of iron, cobalt and nickel. Oxford, England: Pergamon Press. 1975. ISBN 0080188737. 

参见