跳至內容

加長型球狀屋頂

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
加長型球狀屋頂
加長型球狀屋頂
類別詹森多面體
J87 - J88 - J89
識別
名稱加長型球狀屋頂
sphenomegacorona
別名長球形屋根(日語)
參考索引J88
鮑爾斯縮寫
verse-and-dimensions的wikiaBowers acronym
wamco
性質
18
28
頂點12
歐拉特徵數F=18, E=28, V=12 (χ=2)
組成與佈局
面的種類16個三角形
2個正方形
頂點圖2個(34)
2個(32.42)
2×2個(35)
4個(34.4)
對稱性
對稱群C2v
特性
圖像
立體圖

展開圖

加長型球狀屋頂(日語:長球形屋根、英語:Sphenomegacorona)是一種由16個三角形和2個正方形組成的十八面體[1],為詹森多面體的其中一個,索引為J88[2]。它無法由柏拉圖立體(正多面體)和阿基米得立體(半正多面體)經過切割、增補而得來,是詹森多面體中的基本立體之一。詹森多面體是凸多面體,面皆由正多邊形組成但不屬於均勻多面體,共有92種。這些立體最早在1966年由諾曼·詹森英語Norman Johnson (mathematician)(Norman Johnson)命名並給予描述[3]

性質

加長型球狀屋頂共由18個、28條和12個頂點所組成[4][5][6][7]。在其18個面中,有16個正三角形和2個正方形[5]。在其12個頂點中,有2個頂點是4個正三角形的公共頂點[7],在頂點圖中可以用[34]來表示[8]、還有4個頂點是5個正三角形的公共頂點[7],在頂點圖中可以用[35]來表示[8]、還有4個頂點是4個正三角形和1個正方形的公共頂點[7],在頂點圖中可以用[34,4]來表示[8]、剩下的2個頂點是2個正三角形和2個正方形的公共頂點[7],在頂點圖中可以用[32,42]來表示[8]

體積與表面積

若一個加長型球狀屋頂邊長為,則其表面積為:[9]

[10]

而其體積為:

其中的常數OEISA334114給出[11],其為下列多項式的其中一個實根,約為1.948108228859[11]

頂點座標

邊長為2的加長型球狀屋頂的頂點座標為:

其中,為:

其中, ≈ 0.59463是下列多項式的做小實根:

這些座標也可以由下列頂點的軌道的並集在沿xz平面和yz平面鏡射所產生的空間對稱群群作用下給出:[12]

相關多面體

參見

參考文獻

  1. ^ Santiago Alvarez. Polyhedra in (Inorganic) Chemistry (PDF). Electronic Supplementary Information for Dalton Transactions. 2005 [2022-09-25]. (原始內容存檔 (PDF)於2022-01-21). 
  2. ^ Weisstein, Eric W. (編). Sphenomegacorona. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英語). 
  3. ^ Johnson, Norman W.英語Norman Johnson (mathematician), Convex polyhedra with regular faces, Canadian Journal of Mathematics英語Canadian Journal of Mathematics, 1966, 18: 169–200, MR 0185507, Zbl 0132.14603, doi:10.4153/cjm-1966-021-8 .
  4. ^ V.Bulatov. sphenomegacorona. [2022-09-11]. (原始內容存檔於2022-12-08). 
  5. ^ 5.0 5.1 David I. McCooey. Johnson Solids: Sphenomegacorona. [2022-09-07]. (原始內容存檔於2022-09-11). 
  6. ^ The Sphenomegacorona. qfbox.info. [2022-09-11]. (原始內容存檔於2023-01-03). 
  7. ^ 7.0 7.1 7.2 7.3 7.4 Sphenomegacorona. polyhedra.tessera.li. [2022-09-11]. (原始內容存檔於2022-12-05). 
  8. ^ 8.0 8.1 8.2 8.3 Richard Klitzing. sphenomegacorona, wamco. bendwavy.org. [2022-09-11]. (原始內容存檔於2022-12-08). 
  9. ^ Wolfram, Stephen. "Sphenomegacorona". from Wolfram Alpha: Computational Knowledge Engine, Wolfram Research (英語). 
  10. ^ Wolfram Research, Inc. Wolfram|Alpha Knowledgebase. Champaign, IL. 2020. PolyhedronData[{"Johnson", 88}, "SurfaceArea"] 
  11. ^ 11.0 11.1 Sloane, N.J.A. (編). Sequence A334114. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  12. ^ Timofeenko, A. V. The non-Platonic and non-Archimedean noncomposite polyhedra. Journal of Mathematical Science. 2009, 162 (5): 720. S2CID 120114341. doi:10.1007/s10958-009-9655-0. 

外部連結