跳转到内容

正图形

维基百科,自由的百科全书
正图形
一些正几何形状的例子
正五边形是一个多边形,是一个正图形,由5个边组成的二维正多胞形,其施莱夫利符号为{5}
正五边形是一个多边形,是一个正图形,由5个边组成的二维正多胞形,其施莱夫利符号为{5}
正十二面体是一个多面体,是一个正图形,由12个正五边形面组成的三维正多胞形,其施莱夫利符号为{5,3}
正十二面体是一个多面体,是一个正图形,由12个正五边形面组成的三维正多胞形,其施莱夫利符号为{5,3}
正一百二十胞体是一个四维多胞体,是一个正图形,由120个正十二面体胞组成的四维正多胞形,其施莱夫利符号为{5,3,3}。(这里展示的是施莱格尔图像(英语:Schlegel diagram))
正一百二十胞体是一个四维多胞体,是一个正图形,由120个正十二面体胞组成的四维正多胞形,其施莱夫利符号为{5,3,3}。(这里展示的是施莱格尔图像英语Schlegel diagram
正方体堆砌是一个三维空间堆砌,可被看作是四维的无穷胞体,施莱夫利符号为{4,3,4}
正方体堆砌是一个三维空间堆砌,可被看作是四维的无穷胞体,施莱夫利符号为{4,3,4}
八维超正方体的256个顶点和1024条棱可以用正交投影来展示。(皮特里多边形)
八维超正方体的256个顶点和1024条棱可以用正交投影来展示。(皮特里多边形

几何学中,正图形几何形状(英语:Regular Geometric Shape)是一类具有高度对称性的几何结构。其中,若该几何结构是由线段、平面或超平面的边界构成则又可称为正多胞形(英语:Regular polytope)。

和正图形相对的概念为不规则图形(Irregular Geometric Shape)或不规则几何形状非正几何形状,其对称性比正图形低或无对称性。在不规则图形中,依照对称性的高低又可以分为拟正图形(Quasiregular)、半正图形英语Semiregular_polytope(Semiregular)、似正英语Demiregular tiling图形(Demiregular)、均匀图形英语Uniform_polytope(Uniform)等几何结构。

正多胞形

正多胞形是一种对称性对于标记可递的几何结构,且具有高度对称性,对于该几何体内所有同维度的元素(如:点、线、面)都完全具有相同的性质,并且每一个元素皆为一个正图形,例如,正方体所有的面的面积及形状皆相同,且皆为正方形,是一个二维正多胞形、所有边的长度也相同,所有角的角度及形式也相同,因此正方体是一个正图形或正多胞形。对于所有元素,或叫j维面(对所有的 0 ≤ j ≤ n,其中n是该几何体所在的维度) — 胞、面等等 — 也都对于多胞形的对称性可递,也是≤ n维的正图形。

正图形是正多边形(例如:正方形或者正五边形[1] )和正多面体(例如立方体)的向任意维度的推广类比。正图形极强的对称性使它们拥有极强的审美价值,吸引着数学家和数学爱好者。

一般地,n维正图形被定义为有正维面[(n − 1)-表面]和正顶点图。这两个条件已经能充分地保证所有面、所有顶点都是相似的。但要注意的是,这一定义并不适用于抽象多胞形英语abstract polytope

一个正图形能用形式为{a, b, c, ...., y, z}的施莱夫利符号代表,其正的面为{a, b, c, ..., y},顶点图为{b, c, ..., y, z}。

分类和描述

正图形最基础的分类是按其维度。

它们能够按照对称性进一步分类。例如,正方体正八面体有着相同的对称性,同样,正十二面体正二十面体也是。事实上,对称群大多依照正图形命名,例如正四面体对称群和正二十面体对称群。

3种特殊类型的正图形存在于所有维度:

在二维,这里有无穷多个正多边形。在三维和四维这里有许多上述三种之外的正多面体正多胞体。在五维及以上维,只存在这三种类型的正图形。另见正图形列表

正图形的概念有时被扩展,使其包括了另外一些相关的几何对象。其中一些有正的例子,下面“历史发现”一章将会详细说明。

施莱夫利符号

施莱夫利符号是一个简洁有力的多面体表示法,是19世纪由路德维希·施莱夫利所发明的,一个改进了的版本随后成为了标准。这种记号可通过维度依次增加一获得最好的解释。

  • 一个有n条边的正多边形可以标记为{n}。所以一个等边三角形是{3},一个正方形是{4}……一个绕其中心旋转m圈的正星形多边形被标记为分式{n/m},这里nm互质的,例如正五角星是{5/2}。
  • 一个有着面{n},并且一个顶点处有p个面相交的正多面体标记为{n, p}。九个正多面体是:{3, 3}、{3, 4}、{4, 3}、{3, 5}、{5, 3}、{3, 5/2}、{5/2, 3}、{5, 5/2}和{5/2, 5}。{p}就是这个正多面体的顶点图
  • 一个有着胞{n, p},并且每一条棱处有q个胞相交的正多胞体标记为{n, p, q}。其顶点图为{p, q}。
  • 一个五维正多胞体是{n, p, q, r},等等。

正图形的对偶性

正图形的对偶形也是正图形。对偶图形的施莱夫利符号就是将原来的符号倒过来写:{3,3}为自身对偶,{3,4}与{4,3}对偶,{4,3,3}与{3,3,4}对偶,以此类推。

正图形的顶点图的对偶即是其对偶图形的维面。例如{3,3,4}的顶点图是{3,4},其对偶即是{4,3} — {4,3,3}的一个胞。

任何维的超方形正轴形都是互相对偶的。

如果其施莱夫利符号是回文,即正反读都一样,那么这个正图形就是自身对偶的。自身对偶正图形包括:

正单纯形

1-正单纯形 到 4-正单纯形 的图像
线段 正三角形 正四面体 正五胞体
 

我们从点A开始。标下与A相距r的点B,并连接它们,形成线段。在垂直与它的第二维度标下与AB都相距r的第三点C,并连接ACBC,形成正三角形。在垂直与它的第三维度标下与三点都相距r的第四点D,连接四点,便形成正四面体。用同样的方法,我们可以得到更高维的类似正图形。

这些就是正单纯形。以维度来排序,它们是:

0.
1. 线段
2. 正三角形(正三边形)
3. 正四面体
4. 正五胞体 4-单纯形
5. 五维正六胞体 5-单纯形
... n-单纯形有n+1个顶点。

超方形

2-超方形 到 4-超方形 的图像
正方形 立方体 超正方体

从一个点A开始。连一条线到距离为rB,形成一条线段。延伸第二条长为r的线,垂直于AB,将B连接到C,同样链接AD,形成一个正方形ABCD。从每个顶点同样延伸出长为r的线,同时垂直于ABBC,标记点EFGH形成立方体ABCD-EFGH。用同样的方法,我们可以得到更高维的类似正图形。

它们就是超方形或称正测形。以维度来排序,它们是:

0.
1. 线段
2. 正方形(正四边形)
3. 立方体(正六面体)
4. 四维超正方体(正八胞体)4-超方体
5. 五维超正方体(五维正十胞体)5-超方体
...一个n-超方体有2n个顶点。

正轴形

2-正轴形 到 4-正轴形 的图像
正方形 正八面体 正十六胞体

从一个点O开始。从O向两个相反的方向延出两条线到距O点距离为rAB,互相之间距离为2r,形成一条线段。同样再画线段COD,长度为2r,以O为中点而垂直于AB。连接4个顶点形成正方形ACBD。再画线段EOF,同样长度为2r,中点为O,同时垂直于ABCD(即上下方向)。将其顶点与正方形顶点一一相连得到正八面体。用同样的方法,我们可以得到更高维的类似正图形。

这样得到的图形称为正轴形交叉形。以维度来排序,它们是:

0.
1. 线段
2. 正方形(正四边形)
3. 正八面体
4. 正十六胞体4-正轴形
5. 正三十二超胞体(五维正三十二胞体)5-正轴形
...n-正轴形有2n个顶点。

正无穷胞体 — 无穷多胞形

参见

参考文献

  1. ^ Regular Geometric Shapes (PDF). mommycrusader.com. [2019-04-13]. (原始内容 (PDF)存档于2019-04-13). 
  • (Coxeter, 1948) Coxeter, H. S. M.; Regular Polytopes, (Methuen and Co., 1948).
  • (Coxeter, 1974) Coxeter, H. S. M.; Regular Complex Polytopes, (Cambridge University Press, 1974).
  • (Coxeter, 1982) Coxeter, H. S. M.; Ten Toroids and Fifty-Seven hemi-Dodecahedra Geometrica Dedicata 13 pp87–99.
  • (Coxeter, 1984) Coxeter, H. S. M.; A Symmetrical Arrangement of Eleven hemi-Icosahedra Annals of Discrete Mathematics 20 pp103–114.
  • (Coxeter, 1999) Coxeter, H. S. M.; Du Val, P.; Flather, H. T.; Petrie, J. F.; The Fifty-Nine Icosahedra (Tarquin Publications, Stradbroke, England, 1999)
  • (Cromwell, 1997) Cromwell, Peter R.; Polyhedra (Cambridge University Press, 1997)
  • (Euclid) Euclid, Elements, English Translation by Heath, T. L.; (Cambridge University Press, 1956).
  • (Grünbaum, 1977) Grünbaum, B.; Regularity of Graphs, Complexes and Designs, Problèmes Combinatoires et Théorie des Graphes, Colloquium Internationale CNRS, Orsay, 260 pp191–197.
  • (Grünbaum, 1994) B. Grünbaum, Polyhedra with hollow faces, Proc of NATO-ASI Conference on Polytopes ... etc. ... (Toronto 1993), ed T. Bisztriczky et al., Kluwer Academic pp. 43–70.
  • (Hilbert, 1952) Hilbert, D.; Cohn-Vossen, S. Geometry and the imagination, (Chelsea, 1952) p144.
  • (Haeckel, 1904) Haeckel, E.; Kunstformen der Natur (1904). Available as Haeckel, E.; Art forms in nature (Prestel USA, 1998), ISBN 3-7913-1990-6, or online at https://web.archive.org/web/20090627082453/http://caliban.mpiz-koeln.mpg.de/~stueber/haeckel/kunstformen/natur.html
  • (Lindemann, 1987) Lindemann F.; Sitzunger Bayerische Akademie Der Wissenschaften 26 (1987) pp625–768.
  • (McMullen, 2002) McMullen, P.; Schulte, S.; Abstract Regular Polytopes; (Cambridge University Press, 2002)
  • (Sanford, 1930) Sanford, V.; A Short History Of Mathematics, (The Riverside Press, 1930).
  • (Schläfli, 1855), Schläfli, L.; Reduction D'Une Integrale Multiple Qui Comprend L'Arc Du Cercle Et L'Aire Du Triangle Sphérique Comme Cas Particulières, Journal De Mathematiques 20 (1855) pp359–394.
  • (Schläfli, 1858), Schläfli, L.; On The Multiple Integral ndx dy ... dz, Whose Limits Are and Quarterly Journal Of Pure And Applied Mathematics 2 (1858) pp269–301, 3 (1860) pp54–68, 97–108.
  • (Schläfli, 1901), Schläfli, L.; Theorie Der Vielfachen Kontinuität, Denkschriften Der Schweizerischen Naturforschenden Gesellschaft 38 (1901) pp1–237.
  • (Shephard, 1952) Shephard, G.C.; Regular Complex Polytopes, Proc. London Math. Soc. Series 3, 2 (1952) pp82–97.
  • (Smith, 1982) Smith, J. V.; Geometrical And Structural Crystallography, (John Wiley and Sons, 1982).
  • (Van der Waerden, 1954) Van der Waerden, B. L.; Science Awakening, (P Noordhoff Ltd, 1954), English Translation by Arnold Dresden.
  • D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions. New York, E. P. Dutton, 1930. 196 pp. (Dover Publications edition, 1958) Chapter X: The Regular Polytopes
  • Olshevsky, George, Regular polytope at Glossary for Hyperspace.
  • Stella: Polyhedron Navigator页面存档备份,存于互联网档案馆) Tool for exploring 3D polyhedra, 4D polytopes, and printing nets
  • Ernst Haeckel's Kunstformen der Natur online (German)
  • Interesting fold-out nets of the cube, octahedron, dodecahedron and icosahedron页面存档备份,存于互联网档案馆