跳转到内容

User:Phantomsq/命題邏輯

维基百科,自由的百科全书

基本術語

  • 陳述
  • 命題
  • 原子命題(簡單命題)
  • 命題公式
  • 命題常元
  • 命題變元

命題連接詞

意義 符號 其他符號 說明
否定 ~ 非P
合取 P且Q
析取 P或Q
蘊涵 若P則Q,P為Q的充分條件,Q為P的必要條件
等值 P若且唯若Q,P為Q的充要條件

二元連接詞

P Q
0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1
0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1
1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1
1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

推理規則

基本及衍生的推理形式:

名稱 推理式 說明
排中律 (Law of excluded middle) or not is true
無矛盾律 (Law of non-contradiction) and not is false, is a true statement
雙否定律 (Double Negation, DN) is equivalent to the negation of not
合取律 (Conjunction, conj) and are true separately; therefore they are true conjointly
簡化律 (Simplification, simp) and are true; therefore is true
添加律 (Addition, add) is true; therefore the disjunction ( or ) is true
重言式1 (Tautology) is true is equiv. to is true or is true
重言式2 (Tautology) is true is equiv. to is true and is true
實質蘊涵 (Material Implication) If then is equiv. to not or
換質換位律 (Transposition, trans) If then is equiv. to if not then not
實質等值1 (Material Equivalence) ( iff ) is equiv. to (if is true then is true) and (if is true then is true)
實質等值2 (Material Equivalence) ( iff ) is equiv. to either ( and are true) or (both and are false)
實質等值3 (Material Equivalence) ( iff ) is equiv to., both ( or not is true) and (not or is true)
交換律1 (Commutation, comm) ( or ) is equiv. to ( or )
交換律2 (Commutation, comm) ( and ) is equiv. to ( and )
交換律3 (Commutation, comm) ( is equiv. to ) is equiv. to ( is equiv. to )
結合律1 (Association, asso) or ( or ) is equiv. to ( or ) or
結合律2 (Association, asso) and ( and ) is equiv. to ( and ) and
分配律1 (Distribution, dist) and ( or ) is equiv. to ( and ) or ( and )
分配律2 (Distribution, dist) or ( and ) is equiv. to ( or ) and ( or )
狄摩根定理1 (De Morgan's Theorem, DeM) The negation of ( and ) is equiv. to (not or not )
狄摩根定理2 (De Morgan's Theorem, DeM) The negation of ( or ) is equiv. to (not and not )
正前律 (Modus Ponens, MP) If then ; ; therefore
負後律 (Modus Tollens, MT) If then ; not ; therefore not
選言三段論 (Disjunctive Syllogism, DS) Either or , or both; not ; therefore,
假言三段論 (Hypothetical Syllogism, HS) If then ; if then ; therefore, if then
移出律 (Exportation) from (if and are true then is true) we can prove (if is true then is true, if is true)
移入律 (Importation) If then (if then ) is equivalent to if and then
組合律 (Composition, comp) If then ; and if then ; therefore if is true then and are true
建設性兩難 (Constructive Dilemma, CD) If then ; and if then ; but or ; therefore or
破壞性兩難 (Destructive Dilemma, DD) If then ; and if then ; but not or not ; therefore not or not
雙向兩難 (Bidirectional Dilemma, BD) If then ; and if then ; but or not ; therefore or not
歸繆法 (Reductio ad absurdum)
枚舉法 (Proof by cases)
爆炸原理 (Principle of explosion)

注釋