跳转到内容

用户:Phantomsq/命题逻辑

维基百科,自由的百科全书

基本术语

  • 陈述
  • 命题
  • 原子命题(简单命题)
  • 命题公式
  • 命题常元
  • 命题变元

命题连接词

意义 符号 其他符号 说明
否定 ~ 非P
合取 P且Q
析取 P或Q
蕴涵 若P则Q,P为Q的充分条件,Q为P的必要条件
等值 P当且仅当Q,P为Q的充要条件

二元连接词

P Q
0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1
0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1
1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1
1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

推理规则

基本及衍生的推理形式:

名称 推理式 说明
排中律 (Law of excluded middle) or not is true
无矛盾律 (Law of non-contradiction) and not is false, is a true statement
双否定律 (Double Negation, DN) is equivalent to the negation of not
合取律 (Conjunction, conj) and are true separately; therefore they are true conjointly
简化律 (Simplification, simp) and are true; therefore is true
添加律 (Addition, add) is true; therefore the disjunction ( or ) is true
重言式1 (Tautology) is true is equiv. to is true or is true
重言式2 (Tautology) is true is equiv. to is true and is true
实质蕴涵 (Material Implication) If then is equiv. to not or
换质换位律 (Transposition, trans) If then is equiv. to if not then not
实质等值1 (Material Equivalence) ( iff ) is equiv. to (if is true then is true) and (if is true then is true)
实质等值2 (Material Equivalence) ( iff ) is equiv. to either ( and are true) or (both and are false)
实质等值3 (Material Equivalence) ( iff ) is equiv to., both ( or not is true) and (not or is true)
交换律1 (Commutation, comm) ( or ) is equiv. to ( or )
交换律2 (Commutation, comm) ( and ) is equiv. to ( and )
交换律3 (Commutation, comm) ( is equiv. to ) is equiv. to ( is equiv. to )
结合律1 (Association, asso) or ( or ) is equiv. to ( or ) or
结合律2 (Association, asso) and ( and ) is equiv. to ( and ) and
分配律1 (Distribution, dist) and ( or ) is equiv. to ( and ) or ( and )
分配律2 (Distribution, dist) or ( and ) is equiv. to ( or ) and ( or )
狄摩根定理1 (De Morgan's Theorem, DeM) The negation of ( and ) is equiv. to (not or not )
狄摩根定理2 (De Morgan's Theorem, DeM) The negation of ( or ) is equiv. to (not and not )
正前律 (Modus Ponens, MP) If then ; ; therefore
负后律 (Modus Tollens, MT) If then ; not ; therefore not
选言三段论 (Disjunctive Syllogism, DS) Either or , or both; not ; therefore,
假言三段论 (Hypothetical Syllogism, HS) If then ; if then ; therefore, if then
移出律 (Exportation) from (if and are true then is true) we can prove (if is true then is true, if is true)
移入律 (Importation) If then (if then ) is equivalent to if and then
组合律 (Composition, comp) If then ; and if then ; therefore if is true then and are true
建设性两难 (Constructive Dilemma, CD) If then ; and if then ; but or ; therefore or
破坏性两难 (Destructive Dilemma, DD) If then ; and if then ; but not or not ; therefore not or not
双向两难 (Bidirectional Dilemma, BD) If then ; and if then ; but or not ; therefore or not
归缪法 (Reductio ad absurdum)
枚举法 (Proof by cases)
爆炸原理 (Principle of explosion)

注释