跳至內容

地理統計

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

地理統計(英語:geostatistics,或譯作地統計學地學統計地質統計學等)是統計學中關注空間或時空數據集的一個分支,最初是從採礦作業中預測礦石品位的機率分布而發展出來的[1],目前已應用於石油地質學水文地質學水文學氣象學海洋學地球化學地質冶金學英語Geometallurgy地理學林業、環境控制、景觀生態學土壤學,以及農業(尤其是精準農業)等多個學科。地理統計應用於地理學的各個分支,特別是涉及疾病傳播(流行病學)、商業和軍事規劃(物流)的實踐,還應用於建設高效的空間網絡英語Spatial network。地理統計相關算法已融入地理資訊系統(GIS)等許多應用場景。

背景

地理統計與插值方法密切相關,但遠不止簡單的插值問題。地理統計技術依賴基於隨機函數(或隨機變數)理論的統計模型來模擬與空間估計和模擬相關的不確定性。

許多更簡單的插值方法/算法,例如反距離加權雙線性插值最近鄰插值,在地統計學問世前就已經普及。[2]但地統計學超越了插值問題,將位於未知位置的要研究的現象視作一組相關的隨機變數。

Z(x)為特定位置x處的感興趣變數的值。這個值是未知的(例如溫度、降雨量、測壓水位、地質相等)。儘管可以前往位置x測量該數值,但地統計學認為該值在尚未測量時是隨機的。然而,Z(x)又不完全隨機,可以用累積分布函數(CDF)定義,而該函數依賴於關於Z(x)值的某些已知資訊(information):

通常,如果靠近x的某些位置(或位於x鄰域中)的Z的值已知,則可以通過該鄰域來約束Z(x)的累積分布函數:如果假設空間是高度連續的(空間自我相關),則Z(x)必與附近的值相似。相反,若空間連續性很弱,則Z(x)可以取任何值。隨機變數的空間連續性可以用空間連續性模型來描述;它可以是基於變差函數的地統計學中的參數形式的模型,也可以是無母數形式的,如多點模擬[3]或偽遺傳方法。

研究者可將單個空間模型應用在整個定義域上,藉此假設Z是一個平穩過程。它表示相同的統計屬性適用於整個定義域。許多種地理統計方法提供了將這些平穩性假設的條件放寬的方法。

該框架中,可以區分兩個建模目標:

  1. 估計Z(x)的值,通常使用累積分布函數f(z,x)期望值中位數眾數。其通常表現為估計問題。
  2. 考慮每個位置上的每種可能結果,從整個機率密度函數f(z,x)採樣。其方法通常是建立幾個替代性的Z,稱為實現(realization)。考慮在N維網格節點(或像素)中離散化的域。每個實現都是完整N聯合分布函數的樣本
該方法承認插值問題存在多種解法。每個實現都被視作真實變數可能取值的情形。然後,所有與之相關的工作流都在考慮實現的集成,從而考慮允許機率預測的預測集成。因此,地統計學常用於在求解逆問題時生成或更新空間模型。[4][5]

地理統計估計和多重實現方法都存在許多方法。一些參考書提供了該學科的全面概述。[6][2][7][8][9][10][11][12][13][14][15]

方法

估計

克里金法

克里金法(Kriging)是一類地統計技術,用於在缺少觀測值的位置,根據在附近位置的觀察值插入隨機場的值(例如高程z)。

貝氏估計

貝氏推論是一種統計推論方法,它使用貝氏定理在獲得更多證據或資訊時更新機率模型。貝氏推論在地統計學中日益重要。[16]貝氏估計通過空間過程實現克里金法,最常見的是高斯過程,並使用貝氏定理更新該過程以計算其事後機率。另有高維貝葉斯地統計學。[17]

有限差分法

考慮到機率守恆原理,循環差分方程式(有限差分方程式)可與格網相結合,計算機率,對地質構造的不確定性進行量化。此過程是馬可夫鏈和貝葉斯模型的數值替代方法。[18]

模擬

定義和工具

參見

參考文獻

  1. ^ Krige, Danie G. (1951). "A statistical approach to some basic mine valuation problems on the Witwatersrand". J. of the Chem., Metal. and Mining Soc. of South Africa 52 (6): 119–139
  2. ^ 2.0 2.1 Isaaks, E. H. and Srivastava, R. M. (1989), An Introduction to Applied Geostatistics, Oxford University Press, New York, USA.
  3. ^ Mariethoz, Gregoire, Caers, Jef (2014). Multiple-point geostatistics: modeling with training images. Wiley-Blackwell, Chichester, UK, 364 p.
  4. ^ Hansen, T.M., Journel, A.G., Tarantola, A. and Mosegaard, K. (2006). "Linear inverse Gaussian theory and geostatistics", Geophysics 71
  5. ^ Kitanidis, P.K. and Vomvoris, E.G. (1983). "A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations", Water Resources Research 19(3):677-690
  6. ^ Remy, N., et al. (2009), Applied Geostatistics with SGeMS: A User's Guide, 284 pp., Cambridge University Press, Cambridge.
  7. ^ Deutsch, C.V., Journel, A.G, (1997). GSLIB: Geostatistical Software Library and User's Guide (Applied Geostatistics Series), Second Edition, Oxford University Press, 369 pp., http://www.gslib.com/頁面存檔備份,存於網際網路檔案館
  8. ^ Chilès, J.-P., and P. Delfiner (1999), Geostatistics - Modeling Spatial Uncertainty, John Wiley & Sons, Inc., New York, USA.
  9. ^ Lantuéjoul, C. (2002), Geostatistical simulation: Models and algorithms, 232 pp., Springer, Berlin.
  10. ^ Journel, A. G. and Huijbregts, C.J. (1978) Mining Geostatistics, Academic Press. ISBN 0-12-391050-1
  11. ^ Kitanidis, P.K. (1997) Introduction to Geostatistics: Applications in Hydrogeology, Cambridge University Press.
  12. ^ Wackernagel, H. (2003). Multivariate geostatistics, Third edition, Springer-Verlag, Berlin, 387 pp.
  13. ^ Pyrcz, M. J. and Deutsch, C.V., (2014). Geostatistical Reservoir Modeling, 2nd Edition, Oxford University Press, 448 pp.
  14. ^ Tahmasebi, P., Hezarkhani, A., Sahimi, M., 2012, Multiple-point geostatistical modeling based on the cross-correlation functions, Computational Geosciences, 16(3):779-79742,
  15. ^ Schnetzler, Manu. Statios - WinGslib. [2023-05-14]. (原始內容存檔於2015-05-11). 
  16. ^ Banerjee S., Carlin B.P., and Gelfand A.E. (2014). Hierarchical Modeling and Analysis for Spatial Data, Second Edition. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. ISBN 9781439819173
  17. ^ Banerjee, Sudipto. High-Dimensional Bayesian Geostatistics. Bayesian Anal. 12 (2017), no. 2, 583--614. doi:10.1214/17-BA1056R. https://projecteuclid.org/euclid.ba/1494921642頁面存檔備份,存於網際網路檔案館
  18. ^ Cardenas, IC. A two-dimensional approach to quantify stratigraphic uncertainty from borehole data using non-homogeneous random fields. Engineering Geology. 2023. doi:10.1016/j.enggeo.2023.107001可免費查閱. 
  1. Armstrong, M and Champigny, N, 1988, A Study on Kriging Small Blocks, CIM Bulletin, Vol 82, No 923
  2. Armstrong, M, 1992, Freedom of Speech? De Geeostatisticis, July, No 14
  3. Champigny, N, 1992, Geostatistics: A tool that works, The Northern Miner, May 18
  4. Clark I, 1979, Practical Geostatistics頁面存檔備份,存於網際網路檔案館), Applied Science Publishers, London
  5. David, M, 1977, Geostatistical Ore Reserve Estimation, Elsevier Scientific Publishing Company, Amsterdam
  6. Hald, A, 1952, Statistical Theory with Engineering Applications, John Wiley & Sons, New York
  7. Honarkhah, Mehrdad; Caers, Jef. Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling. Mathematical Geosciences. 2010, 42 (5): 487–517. doi:10.1007/s11004-010-9276-7.  (best paper award IAMG 09)
  8. ISO/DIS 11648-1 Statistical aspects of sampling from bulk materials-Part1: General principles
  9. Lipschutz, S, 1968, Theory and Problems of Probability, McCraw-Hill Book Company, New York.
  10. Matheron, G. 1962. Traité de géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 pp.
  11. Matheron, G. 1989. Estimating and choosing, Springer-Verlag, Berlin.
  12. McGrew, J. Chapman, & Monroe, Charles B., 2000. An introduction to statistical problem solving in geography, second edition, McGraw-Hill, New York.
  13. Merks, J W, 1992, Geostatistics or voodoo science, The Northern Miner, May 18
  14. Merks, J W, Abuse of statistics, CIM Bulletin, January 1993, Vol 86, No 966
  15. Myers, Donald E.; "What Is Geostatistics?頁面存檔備份,存於網際網路檔案館
  16. Philip, G M and Watson, D F, 1986, Matheronian Geostatistics; Quo Vadis?, Mathematical Geology, Vol 18, No 1
  17. Pyrcz, M.J. and Deutsch, C.V., 2014, Geostatistical Reservoir Modeling, 2nd Edition, Oxford University Press, New York, p. 448
  18. Sharov, A: Quantitative Population Ecology, 1996, https://web.archive.org/web/20020605050231/http://www.ento.vt.edu/~sharov/PopEcol/popecol.html
  19. Shine, J.A., Wakefield, G.I.: A comparison of supervised imagery classification using analyst-chosen and geostatistically-chosen training sets, 1999, https://web.archive.org/web/20020424165227/http://www.geovista.psu.edu/sites/geocomp99/Gc99/044/gc_044.htm
  20. Strahler, A. H., and Strahler A., 2006, Introducing Physical Geography, 4th Ed., Wiley.
  21. Tahmasebi, P., Hezarkhani, A., Sahimi, M., 2012, Multiple-point geostatistical modeling based on the cross-correlation functions, Computational Geosciences, 16(3):779-79742.
  22. Volk, W, 1980, Applied Statistics for Engineers, Krieger Publishing Company, Huntington, New York.

外部連結