地理統計
地理統計(英語:geostatistics,或譯作地統計學、地學統計、地質統計學等)是統計學中關注空間或時空數據集的一個分支,最初是從採礦作業中預測礦石品位的概率分佈而發展出來的[1],目前已應用於石油地質學、水文地質學、水文學、氣象學、海洋學、地球化學、地質冶金學、地理學、林業、環境控制、景觀生態學、土壤學,以及農業(尤其是精準農業)等多個學科。地理統計應用於地理學的各個分支,特別是涉及疾病傳播(流行病學)、商業和軍事規劃(物流)的實踐,還應用於建設高效的空間網絡。地理統計相關算法已融入地理資訊系統(GIS)等許多應用場景。
背景
地理統計與插值方法密切相關,但遠不止簡單的插值問題。地理統計技術依賴基於隨機函數(或隨機變量)理論的統計模型來模擬與空間估計和模擬相關的不確定性。
許多更簡單的插值方法/算法,例如反距離加權、雙線性插值和最近鄰插值,在地統計學問世前就已經普及。[2]但地統計學超越了插值問題,將位於未知位置的要研究的現象視作一組相關的隨機變量。
令Z(x)為特定位置x處的感興趣變量的值。這個值是未知的(例如溫度、降雨量、測壓水位、地質相等)。儘管可以前往位置x測量該數值,但地統計學認為該值在尚未測量時是隨機的。然而,Z(x)又不完全隨機,可以用累積分佈函數(CDF)定義,而該函數依賴於關於Z(x)值的某些已知資訊(information):
通常,如果靠近x的某些位置(或位於x的鄰域中)的Z的值已知,則可以通過該鄰域來約束Z(x)的累積分佈函數:如果假設空間是高度連續的(空間自相關),則Z(x)必與附近的值相似。相反,若空間連續性很弱,則Z(x)可以取任何值。隨機變量的空間連續性可以用空間連續性模型來描述;它可以是基於變差函數的地統計學中的參數形式的模型,也可以是非參數形式的,如多點模擬[3]或偽遺傳方法。
研究者可將單個空間模型應用在整個定義域上,藉此假設Z是一個平穩過程。它表示相同的統計屬性適用於整個定義域。許多種地理統計方法提供了將這些平穩性假設的條件放寬的方法。
該框架中,可以區分兩個建模目標:
- 估計Z(x)的值,通常使用累積分佈函數f(z,x)的期望值、中位數或眾數。其通常表現為估計問題。
- 考慮每個位置上的每種可能結果,從整個概率密度函數f(z,x)中採樣。其方法通常是建立幾個替代性的Z,稱為實現(realization)。考慮在N維網格節點(或像素)中離散化的域。每個實現都是完整N維聯合分佈函數的樣本
- 該方法承認插值問題存在多種解法。每個實現都被視作真實變量可能取值的情形。然後,所有與之相關的工作流都在考慮實現的集成,從而考慮允許概率預測的預測集成。因此,地統計學常用於在求解逆問題時生成或更新空間模型。[4][5]
地理統計估計和多重實現方法都存在許多方法。一些參考書提供了該學科的全面概述。[6][2][7][8][9][10][11][12][13][14][15]
方法
估計
克里金法
克里金法(Kriging)是一類地統計技術,用於在缺少觀測值的位置,根據在附近位置的觀察值插入隨機場的值(例如高程z)。
貝氏估計
貝氏推論是一種統計推論方法,它使用貝氏定理在獲得更多證據或資訊時更新概率模型。貝氏推論在地統計學中日益重要。[16]貝氏估計通過空間過程實現克里金法,最常見的是高斯過程,並使用貝氏定理更新該過程以計算其後驗概率。另有高維貝葉斯地統計學。[17]
有限差分法
考慮到概率守恆原理,循環差分方程(有限差分方程)可與格網相結合,計算概率,對地質構造的不確定性進行量化。此過程是馬可夫鏈和貝葉斯模型的數值替代方法。[18]
模擬
- 聚合
- 分解
- Turning bands
- 科列斯基分解
- 截斷高斯
- Plurigaussian
- Annealing
- 光譜模擬
- 序列指標
- 序列高斯
- Dead Leave
- 轉移概率
- 馬可夫鏈地理統計
- 馬可夫網格模型
- 支持向量機
- 布林模擬
- 遺傳模型
- 偽遺傳模型
- 元胞自動機
- 多點地統計學
定義和工具
參見
參考文獻
- ^ Krige, Danie G. (1951). "A statistical approach to some basic mine valuation problems on the Witwatersrand". J. of the Chem., Metal. and Mining Soc. of South Africa 52 (6): 119–139
- ^ 2.0 2.1 Isaaks, E. H. and Srivastava, R. M. (1989), An Introduction to Applied Geostatistics, Oxford University Press, New York, USA.
- ^ Mariethoz, Gregoire, Caers, Jef (2014). Multiple-point geostatistics: modeling with training images. Wiley-Blackwell, Chichester, UK, 364 p.
- ^ Hansen, T.M., Journel, A.G., Tarantola, A. and Mosegaard, K. (2006). "Linear inverse Gaussian theory and geostatistics", Geophysics 71
- ^ Kitanidis, P.K. and Vomvoris, E.G. (1983). "A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations", Water Resources Research 19(3):677-690
- ^ Remy, N., et al. (2009), Applied Geostatistics with SGeMS: A User's Guide, 284 pp., Cambridge University Press, Cambridge.
- ^ Deutsch, C.V., Journel, A.G, (1997). GSLIB: Geostatistical Software Library and User's Guide (Applied Geostatistics Series), Second Edition, Oxford University Press, 369 pp., http://www.gslib.com/ (頁面存檔備份,存於互聯網檔案館)
- ^ Chilès, J.-P., and P. Delfiner (1999), Geostatistics - Modeling Spatial Uncertainty, John Wiley & Sons, Inc., New York, USA.
- ^ Lantuéjoul, C. (2002), Geostatistical simulation: Models and algorithms, 232 pp., Springer, Berlin.
- ^ Journel, A. G. and Huijbregts, C.J. (1978) Mining Geostatistics, Academic Press. ISBN 0-12-391050-1
- ^ Kitanidis, P.K. (1997) Introduction to Geostatistics: Applications in Hydrogeology, Cambridge University Press.
- ^ Wackernagel, H. (2003). Multivariate geostatistics, Third edition, Springer-Verlag, Berlin, 387 pp.
- ^ Pyrcz, M. J. and Deutsch, C.V., (2014). Geostatistical Reservoir Modeling, 2nd Edition, Oxford University Press, 448 pp.
- ^ Tahmasebi, P., Hezarkhani, A., Sahimi, M., 2012, Multiple-point geostatistical modeling based on the cross-correlation functions, Computational Geosciences, 16(3):779-79742,
- ^ Schnetzler, Manu. Statios - WinGslib. [2023-05-14]. (原始內容存檔於2015-05-11).
- ^ Banerjee S., Carlin B.P., and Gelfand A.E. (2014). Hierarchical Modeling and Analysis for Spatial Data, Second Edition. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. ISBN 9781439819173
- ^ Banerjee, Sudipto. High-Dimensional Bayesian Geostatistics. Bayesian Anal. 12 (2017), no. 2, 583--614. doi:10.1214/17-BA1056R. https://projecteuclid.org/euclid.ba/1494921642 (頁面存檔備份,存於互聯網檔案館)
- ^ Cardenas, IC. A two-dimensional approach to quantify stratigraphic uncertainty from borehole data using non-homogeneous random fields. Engineering Geology. 2023. doi:10.1016/j.enggeo.2023.107001 .
- Armstrong, M and Champigny, N, 1988, A Study on Kriging Small Blocks, CIM Bulletin, Vol 82, No 923
- Armstrong, M, 1992, Freedom of Speech? De Geeostatisticis, July, No 14
- Champigny, N, 1992, Geostatistics: A tool that works, The Northern Miner, May 18
- Clark I, 1979, Practical Geostatistics (頁面存檔備份,存於互聯網檔案館), Applied Science Publishers, London
- David, M, 1977, Geostatistical Ore Reserve Estimation, Elsevier Scientific Publishing Company, Amsterdam
- Hald, A, 1952, Statistical Theory with Engineering Applications, John Wiley & Sons, New York
- Honarkhah, Mehrdad; Caers, Jef. Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling. Mathematical Geosciences. 2010, 42 (5): 487–517. doi:10.1007/s11004-010-9276-7. (best paper award IAMG 09)
- ISO/DIS 11648-1 Statistical aspects of sampling from bulk materials-Part1: General principles
- Lipschutz, S, 1968, Theory and Problems of Probability, McCraw-Hill Book Company, New York.
- Matheron, G. 1962. Traité de géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 pp.
- Matheron, G. 1989. Estimating and choosing, Springer-Verlag, Berlin.
- McGrew, J. Chapman, & Monroe, Charles B., 2000. An introduction to statistical problem solving in geography, second edition, McGraw-Hill, New York.
- Merks, J W, 1992, Geostatistics or voodoo science, The Northern Miner, May 18
- Merks, J W, Abuse of statistics, CIM Bulletin, January 1993, Vol 86, No 966
- Myers, Donald E.; "What Is Geostatistics? (頁面存檔備份,存於互聯網檔案館)
- Philip, G M and Watson, D F, 1986, Matheronian Geostatistics; Quo Vadis?, Mathematical Geology, Vol 18, No 1
- Pyrcz, M.J. and Deutsch, C.V., 2014, Geostatistical Reservoir Modeling, 2nd Edition, Oxford University Press, New York, p. 448
- Sharov, A: Quantitative Population Ecology, 1996, https://web.archive.org/web/20020605050231/http://www.ento.vt.edu/~sharov/PopEcol/popecol.html
- Shine, J.A., Wakefield, G.I.: A comparison of supervised imagery classification using analyst-chosen and geostatistically-chosen training sets, 1999, https://web.archive.org/web/20020424165227/http://www.geovista.psu.edu/sites/geocomp99/Gc99/044/gc_044.htm
- Strahler, A. H., and Strahler A., 2006, Introducing Physical Geography, 4th Ed., Wiley.
- Tahmasebi, P., Hezarkhani, A., Sahimi, M., 2012, Multiple-point geostatistical modeling based on the cross-correlation functions, Computational Geosciences, 16(3):779-79742.
- Volk, W, 1980, Applied Statistics for Engineers, Krieger Publishing Company, Huntington, New York.
外部連結
- GeoENVia (頁面存檔備份,存於互聯網檔案館) promotes the use of geostatistical methods in environmental applications, and organizes bi-annual conferences.
- [1] (頁面存檔備份,存於互聯網檔案館), a resource on the internet about geostatistics and spatial statistics
- On-Line Library that chronicles Matheron's journey from classical statistics to the new science of geostatistics (頁面存檔備份,存於互聯網檔案館)
- [2] (頁面存檔備份,存於互聯網檔案館)
- https://web.archive.org/web/20040326205028/http://geostatscam.com/ Is the site of Jan W. Merks, who claims that geostatistics is "voodoo science" and a "scientific fraud"
- [3] (頁面存檔備份,存於互聯網檔案館) It is a group for exchanging of ideas and discussion on multiple point geostatistics (MPS).