在经典力学里,正则坐标是相空间的一种坐标。正则坐标很自然的出现于哈密顿力学的研究。正如同哈密顿力学的被辛几何广义化,正则变换也被切触变换广义化。如此在经典力学里,正则坐标的19世纪定义也被广义化,成为更抽象地以余切丛为基础的20世纪定义。
定义
在哈密顿力学里,正则坐标 必须满足哈密顿方程:
- ,
- ;
其中, 是哈密顿量、 是广义坐标、 是广义动量。
特性
正则坐标满足基本帕松括号关系:
- ,
- ,
- 。
正则坐标可以用勒让德变换从拉格朗日形式论的广义坐标求得;也可以用正则变换从另外一组正则坐标求得。
相关条目