跳转到内容

多循环群

维基百科,自由的百科全书

数学上,多循环群是符合子群的极大条件的可解群。(子群的极大条件,即任何由子群组成的集合中都存在极大元。这等价于任何子群都是有限生成的。)多循环群都是有限展示的。

名称

多循环群的一个等价定义为:群G次正规序列

使得都是循环群

若定义中,则称G亚循环群

例子

Anatoly Maltsev证明了整数一般线性群的可解子群是多循环群。后来Louis Auslander证明了任何多循环群都是同构于一个整数矩阵群。[1]多循环群的全形也是整数矩阵群。

参考

  1. ^ Dmitriĭ Alekseevich Suprunenko, K. A. Hirsch, Matrix groups (1976), pp. 174–5; Google Books页面存档备份,存于互联网档案馆).