跳至內容

計數排序

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
計數排序
概況
類別排序演算法
資料結構陣列
複雜度
平均時間複雜度
最壞時間複雜度
最佳時間複雜度
空間複雜度
相關變數的定義

計數排序(英語:Counting sort)是一種穩定的線性時間排序演算法。該演算法於1954年由哈羅德·H·西華德提出。計數排序使用一個額外的陣列,其中第i個元素是待排序陣列中值等於的元素的個數。然後根據陣列來將中的元素排到正確的位置。

計數排序的特徵

當輸入的元素是之間的整數時,它的執行時間是。計數排序不是比較排序,因此不被 的下界限制。

由於用來計數的陣列的長度取決於待排序陣列中數據的範圍(等於待排序陣列的最大值與最小值的差加上1),這使得計數排序對於數據範圍很大的陣列,需要大量時間和主記憶體。例如:計數排序是用來排序0到100之間的數字的最好的演算法,但是它不適合按字母順序排序人名。但是,計數排序可以用在基數排序演算法中,能夠更有效的排序數據範圍很大的陣列。

通俗地理解,例如有10個年齡不同的人,統計出有8個人的年齡比A小,那A的年齡就排在第9位,用這個方法可以得到其他每個人的位置,也就排好了序。當然,年齡有重複時需要特殊處理(保證穩定性),這就是為什麼最後要反向填充目標陣列,以及將每個數字的統計減去1。演算法的步驟如下:

  1. 找出待排序的陣列中最大和最小的元素
  2. 統計陣列中每個值為的元素出現的次數,存入陣列的第
  3. 對所有的計數累加(從中的第一個元素開始,每一項和前一項相加)
  4. 反向填充目標陣列:將每個元素放在新陣列的第項,每放一個元素就將減去1

Java語言的實現

public class CountingSort {
    public static void main(String[] args) {
        int[] A = CountingSort.countingSort(new int[]{16, 4, 10, 14, 7, 9, 3, 2, 8, 1});
        Utils.print(A);
    }

    public static int[] countingSort(int[] A) {
        int[] B = new int[A.length];
        // 假设A中的数据a'有,0<=a' && a' < k并且k=100
        int k = 100;
        countingSort(A, B, k);
        return B;
    }

    private static void countingSort(int[] A, int[] B, int k) {
        int[] C = new int[k];
        // 计数
        for (int j = 0; j < A.length; j++) {
            int a = A[j];
            C[a] += 1;
        }
        Utils.print(C);
        // 求计数和
        for (int i = 1; i < k; i++) {
            C[i] = C[i] + C[i - 1];
        }
        Utils.print(C);
        // 整理
        for (int j = A.length - 1; j >= 0; j--) {
            int a = A[j];
            B[C[a] - 1] = a;
            C[a] -= 1;
        }
    }
}


//针对c数组的大小,优化过的计数排序
public class CountSort{
	public static void main(String []args){
		//排序的数组
		int a[] = {100, 93, 97, 92, 96, 99, 92, 89, 93, 97, 90, 94, 92, 95};
		int b[] = countSort(a);
		for(int i : b){
			System.out.print(i + "  ");
		}
		System.out.println();
	}
	public static int[] countSort(int []a){
		int b[] = new int[a.length];
		int max = a[0], min = a[0];
		for(int i : a){
			if(i > max){
				max = i;
			}
			if(i < min){
				min = i;
			}
		}
		//这里k的大小是要排序的数组中,元素大小的极值差+1
		int k = max - min + 1;
		int c[] = new int[k];
		for(int i = 0; i < a.length; ++i){
			c[a[i]-min] += 1;//优化过的地方,减小了数组c的大小
		}
		for(int i = 1; i < c.length; ++i){
			c[i] = c[i] + c[i-1];
		}
		for(int i = a.length-1; i >= 0; --i){
			b[--c[a[i]-min]] = a[i];//按存取的方式取出c的元素
		}
		return b;
	}
}


//另一種參考,
//缺點:不適合數據落差大、浮點數,數據落差大會生成大a數組,數少用其他演算更好。
//優點:線性快,固定重複巨量數據適用,沒有更快,理論,只統計,不做多餘運算或搬移。
import java.util.Arrays;
import java.util.Random;
public class Csoft {
    public static void main(String[] args) {
        // int arr[] = { -535000000, 0, -372, -299,830000};  
		// int arr[] = {100, 93, 97, 92, 96, 99, 92, 89, 93, 97, 90, 94, 0, -1,-1,-95};
        // int arr[] = Random_Numbers(500000000);          
        int arr[] = Random_Numbers(20);          
        System.out.println(Arrays.toString(arr));
        new Csoft(arr);
        System.out.println(Arrays.toString(arr));
    }

    private int min;
    Csoft(){}
    Csoft(int[] arr) {
            b(arr);
    }
    public static int[] b(int[] arr) {
        int max = 0, min = 0;
        for (int i = 0; i < arr.length; i++) {
            max = arr[i] > arr[max] ? i : max;
            min = arr[i] < arr[min] ? i : min;
        }
        int k = -arr[min]; //k=基數
        max = arr[max] + 1;
        int[] a = new int[max + k];
        for (int i = 0; i < arr.length; i++) {
            int o = arr[i] + k;
            a[o]++;
        }
        int t = 0;
        for (int j = 0; j < a.length; j++) {
            if (a[j] > 0) {
                for (int i = 0; i < a[j]; i++) {
                    arr[t] = j - k;
                    t++;
                }
            }
        }
        return arr;
    }    
    public static int[] Random_Numbers(int num) { //亂數負數
        Random r = new Random();
        int[] c = new int[num];
        for (int i = 0; i < num; i++) {
            c[i] = r.nextInt(1000) - 500;
        }
        return c;
    }    
}

C語言的實現

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void print_arr(const int *arr, const int n) {
	printf("%d", arr[0]);
	for (int i = 1; i < n; i++)
		printf(" %d", arr[i]);
	printf("\n");
}

void counting_sort(const int *ini_arr, int *sorted_arr, const int n, const int max_val) {
	int *count_arr = (int *) calloc(max_val, sizeof(int));
	for (int i = 0; i < n; i++)
		count_arr[ini_arr[i]]++;
	for (int i = 1; i < max_val; i++)
		count_arr[i] += count_arr[i - 1];
	for (int i = n; i > 0; i--)
		sorted_arr[--count_arr[ini_arr[i - 1]]] = ini_arr[i - 1];
	free(count_arr);
}

int main(int argc, char **argv) {
	int n = 10;
	int max_val = 100;
	int *arr = (int *) calloc(n, sizeof(int));
	int *sorted_arr = (int *) calloc(n, sizeof(int));
	srand(time(0));
	for (int i = 0; i < n; i++)
		arr[i] = rand() % max_val;
	printf("ini_array: ");
	print_arr(arr, n);
	counting_sort(arr, sorted_arr, n, max_val);
	printf("sorted_array: ");
	print_arr(sorted_arr, n);
	free(arr);
	free(sorted_arr);
	return 0;
}

javascript實現

Array.prototype.countSort = function() {
  const C = []
  for(let i = 0; i < this.length; i++) {
    const j = this[i]
    C[j] >= 1 ? C[j] ++ : (C[j] = 1)
  }
  const D = []
  for(let j = 0; j < C.length; j++) {
    if(C[j]) {
      while(C[j] > 0) {
        D.push(j)
        C[j]--
      }
    }
  }
  return D
}
const arr = [11, 9, 6, 8, 1, 3, 5, 1, 1, 0, 100]
console.log(arr.countSort())

[1]

Golang的實現

  func countingSort(arr []int, minvalue, maxValue int) []int {
      bucketLen := maxValue - minvalue + 1
      bucket := make([]int, bucketLen)
      for _, v := range arr {
          bucket[v-minvalue]++
      }
      result := make([]int, len(arr))
      index := 0
      for k, v := range bucket {
          kk := k + minvalue
          for j := v; j > 0; j-- {
              result[index] = kk
              index++
          }
      }
      return result

  }

Python3的實現

# -*- coding: utf-8 -*-

def count_sort(a: list) -> list:
    a_min: int = min(a)
    k: int = max(a) - a_min + 1
    c: list = [0 for _ in range(k)]

    for i in a:
        c[i - a_min] += 1

    for i, v in enumerate(c):
        if i == 0:
            continue
        c[i] = v + c[i-1]

    result: list = [None for _ in range(len(a))]
    for i in a:
        result[c[i - a_min] - 1] = i
        c[i - a_min] -= 1

    return result


if __name__ == '__main__':
    print(count_sort([652, 721, 177, 977, 24, 17, 126, 515, 442, 917]))

註解

參考資料