跳至內容

花色素苷

維基百科,自由的百科全書

花色素苷(英語:Anthocyanin,簡稱花色苷)是花色素糖苷衍生物的統稱,是一類常見的水溶性植物色素。視乎pH值,花色素苷顯紅、紫或藍色。花色素苷廣泛分佈在陸生植物,尤其是越橘屬懸鈎子屬植物,在藍莓紅莓櫻桃茄子葡萄等食物含量豐富。花色素苷本身也是種經核准的食品添加劑。花色素苷有助植物對抗由非生物因素導致的活性氧類壓力,並為某些植物提供保護色

化學結構

花色素苷的骨架-苯並吡喃鎓離子配以氯離子作為抗衡離子
矢車菊素分子的構象

花色素苷是一組苯並吡喃化合物(花青素)的糖苷衍生物統稱:花青素通常在植物中與糖類糖苷鍵(R3位置)結合的形式存在。在R2位置的苯基可以有不同的取代基。正價的花色素苷的抗衡離子(Counterion)一般是氯離子;對pH敏感,可用作酸鹼指示劑

幾種花青素分子和它們的取代基
花青素 基本結構 R3' R4' R5' R3 R5 R6 R7
橙鳳仙素英語Aurantinidin Basic structure of Anthocyans: The flavio-cation −H −OH −H −OH −OH −OH −OH
矢車菊素 −OH −OH −H −OH −OH −H −OH
翠雀花素 −OH −OH −OH −OH −OH −H −OH
歐花丹素英語Europinidin −OCH3 −OH −OH −OH −OCH3 −H −OH
木犀草定英語Luteolinidin −OH −OH −H −H −OH −H −OH
天竺葵素英語Pelargonidin −H −OH −H −OH −OH −H −OH
錦葵花素 −OCH3 −OH −OCH3 −OH −OH −H −OH
芍藥花素英語Peonidin −OCH3 −OH −H −OH −OH −H −OH
矮牽牛素英語Petunidin −OH −OH −OCH3 −OH −OH −H −OH
玫紅報春素英語Rosinidin −OCH3 −OH −H −OH −OH −H −OCH3

富含花色素苷的植物

花色素苷令圖中植物顯露深紫色。

色澤

被花色素苷染色的花朵可以吸引大量的授粉動物。花色素苷也可令果實顏色鮮豔,吸引草食性動物前來進食,從而促進種子散播。在能夠進行光合作用的組織,例如幼嫩的凱梅斯橡木英語Quercus coccifera,顯紅紫色的花色素苷的吸收光譜和綠色的葉綠素似乎是互補的。這或者能保護葉片免受一些嗜綠色的食草動物的侵害[1]

生理作用

花色素苷有助植物對抗由非生物因素導致的活性氧類壓力,例如被過量紫外光暴曬[2]和極端溫度[3][4]。番茄植物便是利用花色素苷對抗寒冷壓力,從而減少葉部細胞的凋亡[3]

可能的食用價值

紫色的椰菜花含有花色素苷

花色素苷是植物的次級代謝產物和經核准的食品添加劑,歐盟編號E163,能在歐盟、澳洲及新西蘭合法使用[5][6]

儘管花色素苷具備體外的抗氧化特性[7],這種抗氧化能力在進食後不會存留。鮑林研究院英語Linus Pauling Institute歐洲食品安全管理局英語European Food Safety Authority稱,食用花色素苷或其他植物色素在經歷消化過程以後沒有明顯或直接的抗氧化價值[8][9][10]。和受控試管狀況不同,花色素苷在體內經過廣泛代謝,原型只佔5%不到,其餘的都是經化學修飾、被身體順速排走的代謝物[11]。血液的抗氧化餘量在服用富含花色素苷的食物後上升或許是植物色素經代謝後生成尿酸所導致的[11]

花色素苷的分佈

花色素苷存在於細胞液泡內,尤其是花和果的細胞;在葉、莖和根部細胞也偶有發現。在含花色素苷的組織裏,花色素苷多數集中在外層的細胞,例如上皮和外周葉肉細胞。花色素苷在大自然最常存在的形式為矢車菊素翠雀花素錦葵色素芍藥色素英語Peonidin天竺葵素英語Pelargonidin矮牽牛素英語Petunidin糖苷。在碳固定過程中生成的碳氫化合物,有大約2%最終轉化成植物色素(例如花色素苷)。不是所有的陸生植物都含有花色素苷。在石竹目植物(包括仙人掌甜菜莧菜),花色素苷被甜菜根素所取代。有趣的是,花色素苷和甜菜根素從來都不會在同一種植物身上共存[12][13]

由於它們與別不同的外觀和廚藝價值,農業上有時會刻意育種花青素苷含量高的植物,例如血橙甜椒[14]

花朵

花青素苷廣泛存在於不同植物的花朵裏,例如某些藍色花頭的綠絨蒿品種[15]

食物

食物來源 花色素苷含量(毫克每100克食物)
阿薩伊漿果 320
黑加侖 190–270
野櫻莓 1,480[16]
茄子 750
血橙 ~200
馬里昂黑莓 317[17]
黑莓 589[18]
野生黑莓 365
紅莓 558[19]
車厘子 122[20]
皇后石榴莓 277[21]
醋栗 80–420
紫色玉米Z. mays L.) 1,642[22]
紫色玉米 是玉米核的十倍[23]
康科德葡萄 326[24]
諾頓葡萄 888[24]

越橘屬植物,例如藍莓紅莓歐洲越橘,及懸鈎子屬的植物、櫻桃茄子黑米、康科德葡萄,麝香葡萄,紅甘藍紫羅蘭花均富含花青素苷。粉紅色果肉的及粉紅色珍珠蘋果亦含花青素[25][26]。香蕉、蘆筍豌豆茴香、梨和馬鈴薯也含有花色素苷,但含量較低。在某些品種的綠色醋栗中可能完全不含花青素[16]

目前已知花色素苷含量最高的食物為黑豆種皮,含量約為2克/每100克[27]、紫色玉米的芯和殼、野櫻莓的皮和果肉(見表)。由於不同的樣品產地、製備方法及提取過程,表內各項數字不能直接作比較[28][29]

傳統天然的農業技術和植物雜交催生了各種本來不含花青素苷的植物物種,例如藍色或肉紅色的馬鈴薯、紫色或紅色的椰菜花椰菜西蘭花胡蘿蔔玉米

透過基因滲入,園藝番茄從基因改造物種獲得了智利科隆群島紫色野生種的基因型,但最終的雜交產物不含基因改造成分。這個品種被稱為「淀藍玫瑰」並於2012年面世[30]。和普通番茄相比,高花色素苷的番茄保存期翻倍,還能壓抑收割後黴菌繁殖帶來的灰黴病英語Botrytis cinerea[31]

藍番茄

有些基因改造番茄添加了金魚草屬植物的轉錄因子,能夠結出高花色素苷含量的果子[32]。此外,在剛剛成熟的天然橄欖裏,也可找到花色素苷的蹤跡[33][34]。花色素苷是導致某些橄欖顯紅色或紫色的部分原因[33]

食用植物的葉

色彩斑斕的植物,例如紫色玉米,藍莓或越橘,其葉部的花青素苷含量,是其可食用芯或果實的十倍[23][35]。透過對發育中的果樹樹葉進行光譜分析,可以得知其花色素苷的含量、果實的成熟度、質量以至收成期[36]

參見

參考文獻

  1. ^ Karageorgou P; Manetas Y. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiol. 2006, 26 (5): 613–621. PMID 16452075. doi:10.1093/treephys/26.5.613. 
  2. ^ Stapleton, A. E. Ultraviolet Radiation and Plants: Burning Questions. The Plant Cell. 1992-11-01, 4 (11): 1353–1358. ISSN 1532-298X. PMC 160223可免費查閱. PMID 12297637. doi:10.1105/tpc.4.11.1353. 
  3. ^ 3.0 3.1 Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures. PLOS ONE. 2016-03-04, 11 (3): e0151067 [2022-07-16]. ISSN 1932-6203. PMC 4778906可免費查閱. PMID 26943362. doi:10.1371/journal.pone.0151067. (原始內容存檔於2020-11-08). 
  4. ^ Breusegem, Frank Van; Dat, James F. Reactive Oxygen Species in Plant Cell Death. Plant Physiology. 2006-06-01, 141 (2): 384–390 [2017-06-05]. ISSN 1532-2548. PMC 1475453可免費查閱. PMID 16760492. doi:10.1104/pp.106.078295. (原始內容存檔於2020-12-18) (英語). 
  5. ^ UK Food Standards Agency: Current EU approved additives and their E Numbers. [2011-10-27]. (原始內容存檔於2012-02-07). 
  6. ^ Australia New Zealand Food Standards CodeStandard 1.2.4 — Labelling of ingredients. [2011-10-27]. (原始內容存檔於2013-07-19). 
  7. ^ De Rosso, VV; Morán Vieyra, FE; Mercadante, AZ; et al. Singlet oxygen quenching by anthocyanin's flavylium cations. Free Radical Research. October 2008, 42 (10): 885–91. PMID 18985487. doi:10.1080/10715760802506349. 
  8. ^ Lotito SB; Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon?. Free Radic. Biol. Med. 2006, 41 (12): 1727–46. PMID 17157175. doi:10.1016/j.freeradbiomed.2006.04.033. 
  9. ^ Williams RJ; Spencer JP; Rice-Evans C. Flavonoids: antioxidants or signalling molecules?. Free Radical Biology & Medicine. April 2004, 36 (7): 838–49. PMID 15019969. doi:10.1016/j.freeradbiomed.2004.01.001. 
  10. ^ Scientific Opinion on the substantiation of health claims related to various food(s)/food constituent(s) and protection of cells from premature aging, antioxidant activity, antioxidant content and antioxidant properties, and protection of DNA, proteins and lipids from oxidative damage pursuant to Article 13(1) of Regulation (EC) No 1924/20061頁面存檔備份,存於互聯網檔案館), EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)2, 3 European Food Safety Authority (EFSA), Parma, Italy, EFSA Journal 2010; 8(2):1489
  11. ^ 11.0 11.1 "Studies force new view on biology of flavonoids頁面存檔備份,存於互聯網檔案館)", by David Stauth, EurekAlert!. Adapted from a news release issued by Oregon State University
  12. ^ Francis, F.J. Colorants. Egan Press. 1999. ISBN 1-891127-00-4. 
  13. ^ Stafford, Helen A. Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Science. 1994, 101 (2): 91–98 [2017-06-05]. doi:10.1016/0168-9452(94)90244-5. (原始內容存檔於2018-12-13). 
  14. ^ Stommel J, Griesbach RJ. Twice as Nice Breeding Versatile Vegetables. Agricultural Research Magazine, US Department of Agriculture. September 2006 [2016-02-02]. (原始內容存檔於2015-10-25). 
  15. ^ Meconopsis GroupColour Range. [2017-02-12]. (原始內容存檔於2020-05-04). 
  16. ^ 16.0 16.1 Wu X; Gu L; Prior RL; et al. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry. December 2004, 52 (26): 7846–56. PMID 15612766. doi:10.1021/jf0486850. 
  17. ^ Siriwoharn T; Wrolstad RE; Finn CE; et al. Influence of cultivar, maturity, and sampling on blackberry (Rubus L. Hybrids) anthocyanins, polyphenolics, and antioxidant properties. Journal of Agricultural and Food Chemistry. December 2004, 52 (26): 8021–30. PMID 15612791. doi:10.1021/jf048619y. 
  18. ^ Wada L; Ou B. Antioxidant activity and phenolic content of Oregon caneberries. Journal of Agricultural and Food Chemistry. June 2002, 50 (12): 3495–500. PMID 12033817. doi:10.1021/jf011405l. 
  19. ^ Hosseinian FS; Beta T. Saskatoon and wild blueberries have higher anthocyanin contents than other Manitoba berries. Journal of Agricultural and Food Chemistry. December 2007, 55 (26): 10832–8. PMID 18052240. doi:10.1021/jf072529m. 
  20. ^ Wu X; Beecher GR; Holden JM; et al. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry. November 2006, 54 (11): 4069–75. PMID 16719536. doi:10.1021/jf060300l. 
  21. ^ Fanning K; Edwards D; Netzel M; et al. Increasing anthocyanin content in Queen Garnet plum and correlations with in-field measures. Acta Horticulturae. November 2013, 985: 97–104. 
  22. ^ Lieberman S. The antioxidant power of purple corn: a research review. Alternative & Complementary Therapies. 2007, 13 (2): 107–110. doi:10.1089/act.2007.13210. 
  23. ^ 23.0 23.1 Li, C. Y.; Kim, H. W.; Won, S. R.; et al. Corn husk as a potential source of anthocyanins. Journal of Agricultural and Food Chemistry. 2008, 56 (23): 11413–6. PMID 19007127. doi:10.1021/jf802201c. 
  24. ^ 24.0 24.1 Muñoz-Espada, A. C.; Wood, K. V.; Bordelon, B.; et al. Anthocyanin Quantification and Radical Scavenging Capacity of Concord, Norton, and Marechal Foch Grapes and Wines. Journal of Agricultural and Food Chemistry. 2004, 52 (22): 6779–86. PMID 15506816. doi:10.1021/jf040087y. 
  25. ^ Cevallos-Casals, BA; Byrne, D; Okie, WR; et al. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chemistry. 2006, 96: 273–328. doi:10.1016/j.foodchem.2005.02.03. 
  26. ^ Sekido, Keiko; et al. Efficient breeding system for red-fleshed apple based on linkage with S3-RNase allele in ‘Pink Pearl’.. HortScience. 2010, 45 (4): 534–537. 
  27. ^ Choung, Myoung-Gun; Baek, In-Youl; Kang, Sung-Taeg; et al. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J. Agric. Food Chem. December 2001, 49 (12): 5848–51. PMID 11743773. doi:10.1021/jf010550w. 
  28. ^ Krenn, L; Steitz, M; Schlicht, C; et al. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements—analysis with problems. Pharmazie. November 2007, 62 (11): 803–12. PMID 18065095. 
  29. ^ Siriwoharn, T; Wrolstad, RE; Finn, CE; et al. Influence of cultivar, maturity, and sampling on blackberry (Rubus L. Hybrids) anthocyanins, polyphenolics, and antioxidant properties. J Agric Food Chem. December 2004, 52 (26): 8021–30. PMID 15612791. doi:10.1021/jf048619y. 
  30. ^ Scott J. Purple tomato debuts as ‘Indigo Rose’. Oregon State University Extension Service, Corvallis. 2012-01-27 [2014-09-09]. (原始內容存檔於2014-08-22). 
  31. ^ Zhang, Y.; Butelli, E.; De Stefano, R.; et al. Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology. 2013, 23 (12): 1094–100. PMC 3688073可免費查閱. PMID 23707429. doi:10.1016/j.cub.2013.04.072. 
  32. ^ Butelli, Eugenio; Titta, Lucilla; Giorgio, Marco; et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology. November 2008, 26 (11): 1301–8. PMID 18953354. doi:10.1038/nbt.1506. 
  33. ^ 33.0 33.1 Agati, Giovanni; Pinelli, Patrizia; Cortés Ebner, Solange; et al. Nondestructive evaluation of anthocyanins in olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy. Journal of Agricultural and Food Chemistry. March 2005, 53 (5): 1354–63. PMID 15740006. doi:10.1021/jf048381d. 
  34. ^ Stan Kailis & David Harris. The olive tree Olea europaea. Producing Table Olives. Landlinks Press. 2007-02-28: 17–66 [2017-06-05]. ISBN 978-0-643-09203-7. (原始內容存檔於2020-05-04). 
  35. ^ Vyas, P; Kalidindi, S; Chibrikova, L; et al. Chemical analysis and effect of blueberry and lingonberry fruits and leaves against glutamate-mediated excitotoxicity. Journal of Agricultural and Food Chemistry. 2013, 61 (32): 7769–76. PMID 23875756. doi:10.1021/jf401158a. 
  36. ^ Bramley, R.G.V.; Le Moigne, M.; Evain, S.; et al. On-the-go sensing of grape berry anthocyanins during commercial harvest: development and prospects (PDF). Australian Journal of Grape and Wine Research. February 2011, 17: 316–326 [2017-06-05]. doi:10.1111/j.1755-0238.2011.00158.x. (原始內容 (PDF)存檔於2017-10-19).