1,4-戊二炔
1,4-戊二炔 | |
---|---|
IUPAC名 Penta-1,4-diyne | |
識別 | |
CAS編號 | 24442-69-1 |
PubChem | 141112 |
ChemSpider | 124473 |
SMILES |
|
InChI |
|
InChIKey | MDROPVLMRLHTDK-UHFFFAOYSA-N |
性質 | |
化學式 | C5H4 |
摩爾質量 | 64.09 g·mol−1 |
外觀 | 無色液體[1] |
熔點 | −21 °C(252 K)([1]) |
沸點 | 61-64 °C(334-337 K)([2]) |
折光度n D |
1.4283(23 °C)[2] |
結構 | |
偶極矩 | 0.516 D |
若非註明,所有數據均出自標準狀態(25 ℃,100 kPa)下。 |
1,4-戊二炔是化學式C5H4的炔烴,和1,3-戊二炔是異構體。
製備
雖然之前已成功合成更長的炔烴和更複雜的1,4-二炔衍生物,但直到1960年代末都沒有成功合成1,4-戊二炔。[3]通過乙炔鈉或乙炔基溴化鎂和炔丙基溴的反應合成1,4-戊二炔的嘗試都失敗了,[4]反應產物主要是重排產生的1,3-戊二炔。[1]
1,4-戊二炔的首次成功合成是由炔丙基溴和含乙炔基的格氏試劑在氯化亞銅存在下於THF中反應而成。[1][2]
1979年,Verkruijsse和Hasselaar發表了改進了的製備方法。在這個方法中,氯化亞銅改成了溴化亞銅,而炔丙基溴改成了對甲苯磺酸炔丙酯。這個反應的反應溫度更低,副產物較少。[2]
此外,3-乙炔基-1-環丙烯在550 °C的真空閃熱解也會產生1,4-戊二炔和副產物1,2-戊二烯-4-炔。[5]環戊二烯二基的紫外線光解也可以產生1,4-戊二炔。[6]
累積二烯烴和乙炔基自由基反應也可以產生1,4-戊二炔,天體化學研究對該反應感興趣。[7][8][9]
性質
1,4-戊二炔的兩個三鍵的p軌態會排斥中間碳的sp3軌態,使得它不穩定3.9 kcal · mol−1。[10]根據QCSID(T)計算,它的能量比1,3-戊二炔高了25 kcal · mol−1。[11]
雖然微波光譜表明除了0.516 D的偶極矩外,1,4-戊二炔中心碳的四面體形結構沒有顯著扭曲,但在整個π系統中有三個不同的電離能值。[12]
用處
1,4-戊二炔是合成銻雜苯、砷雜苯和磷雜苯及它們的衍生物的常用原材料。[13][14]
參考資料
- ^ 1.0 1.1 1.2 1.3 D. A. Ben-Efraim, F. Sondheimer. The synthesis and some reactions of a series of "skipped" polyacetylenes containing terminal acetylene groups. Tetrahedron. 1969, 25 (14): 2823–2835. doi:10.1016/0040-4020(69)80026-8.
- ^ 2.0 2.1 2.2 2.3 H. D. Verkruijsse, M. Hasselaar. An Improved Synthesis of 1,4-Diynes. Synthesis. 1974, 4 (4): 292–293. doi:10.1055/s-1979-28653.
- ^ H. Taniguchi, I. M. Mathai, S. I. Miller. Synthesis and spectral properties of 1,4- and 1,3-pentadiynes. Tetrahedron. 1966, 22 (3): 867–878. doi:10.1016/0040-4020(66)80058-3.
- ^ J. M. Todd. Attempted preparation of 1, 4-pentadiyne (學位論文). Boston University. 1961. hdl:2144/18627.
- ^ Michael M. Haley, Bluegrass Biggs, Will A. Looney, Robert D. Gilbertson. Synthesis of Alkenyl- and Alkynylcyclopropenes. Tetrahedron Lett. 1995, 36 (20): 3457–3460. doi:10.1016/0040-4039(95)00634-O.
- ^ G. Maier, J. Endres. Photochemistry of matrix-isolated cyclopentadienylidene revisited. J. Mol. Struct. 2000, 556 (1–3): 179–187. doi:10.1016/S0022-2860(00)00631-1.
- ^ Fangtong Zhang , Seol Kim, Ralf I. Kaiser. A crossed molecular beams study of the reaction of the ethynyl radical (C2H(X2Σ+)) with allene (H2CCCH2(X1A1)). Phys. Chem. Chem. Phys. 2009, 11 (23): 4707–4714. PMID 19492123. doi:10.1039/B822366A .
- ^ F. Stahl, P. v. R. Schleyer, H. F. Schaefer III, R. I. Kaiser. Reactions of ethynyl radicals as a source of C4 and C5 hydrocarbons in Titan's atmosphere. Planet. Space Sci. 2002, 50 (7–8): 685–692. doi:10.1016/S0032-0633(02)00014-4.
- ^ Fabien Goulay, Satchin Soorkia, Giovanni Meloni, David L. Osborn, Craig A. Taatjes, Stephen R. Leone. Detection of pentatetraene by reaction of the ethynyl radical (C2H) with allene (CH2=C=CH2) at room temperature. Phys. Chem. Chem. Phys. 2011, 13 (46): 20820–20827. PMID 22002654. doi:10.1039/C1CP22609F.
- ^ Donald W. Rogers, Nikita Matsunaga, Frank J. McLafferty, Andreas A. Zavitsas, Joel F. Liebman. On the Lack of Conjugation Stabilization in Polyynes (Polyacetylenes). J. Org. Chem. 2004, 69 (21): 7143–7147. PMID 15471463. doi:10.1021/jo049390o.
- ^ Nils Hansen, Stephen J. Klippenstein, James A. Miller, Juan Wang, Terrill A. Cool, Matthew E. Law, Phillip R. Westmoreland, Tina Kasper, Katharina Kohse-Höinghaus. Identification of C5Hx Isomers in Fuel-Rich Flames by Photoionization Mass Spectrometry and Electronic Structure Calculations. J. Phys. Chem. A. 2006, 110 (13): 4276–4388. PMID 16571041. doi:10.1021/jp0569685.
- ^ Robert L. Kuczkowski, Frank J. Lovas, R. D. Suenram. The microwave spectrum, structure and dipole moment of 1,4-pentadyine. J. Mol. Struct. 1981, 72: 143–152. doi:10.1016/0022-2860(81)85014-4. hdl:2027.42/24440.
- ^ Arthur J. Ashe III. The group 5 heterobenzenes. Acc. Chem. Res. 1978, 11 (4): 153–157. doi:10.1021/ar50124a005.
- ^ Arthur J. Ashe III, Woon-Tung Chan. Preparation of 2-substituted arsabenzes. J. Org. Chem. 1979, 44 (9): 1409–1413. doi:10.1021/jo01323a010.