布林三段論
此條目沒有列出任何參考或來源。 (2020年4月21日) |
布林運算原指十九世紀英國數學家喬治·布爾發明的直言三段論邏輯系統,他嘗試結合「空集」,就是說不存在的實體的類,比如圓四邊形,而不求助於不可確定的真值。
在布林運算中,全稱陳述「所有S都是P」和「沒有S是P」(在亞里士多德方案中是不同真的),在假定S的集合是空集的時候是可共存的。「所有S都是P」,被解釋為意味着:「沒有東西既是S又是非P」;「沒有S是P」,就是說:「沒有東西既是S又是P」。例如,因為沒有東西是圓四邊形,所以沒有東西是圓四邊形並且是紫色的,和沒有東西是圓四邊形並且是「非」紫色的,這二者都是真的。所以,「所有圓四邊形都是紫色的」和「沒有圓四邊形是紫色的」,這兩個全稱陳述都是真的。
類似的,在存在陳述「有些S是P」和「有些S不是P」之間的不同假的聯絡也被消解了。前者被解釋為「有些東西既S又是P」,後者被解釋為「有些東西既是S又是非P」,在S不存在的時候這二者明顯是假的。
所以,在全稱和存在陳述之間的蘊涵聯絡也不再成立,因為對於一個不存在的S,為真的「所有S都是P」,不蘊涵為假的「有些S是P」。亞里士多德的對立四邊形中,只有矛盾聯絡保持有效。
參見
傳統邏輯:三段論 |
形式:直言三段論 | 選言三段論 | 假言三段論 | 複合三段論 | 準三段論 | 統計三段論 |
其他:對立四邊形 | 布林三段論 | 三段論謬論 |