跳转到内容

布尔三段论

本页使用了标题或全文手工转换
维基百科,自由的百科全书

布尔逻辑原指十九世纪英国数学家乔治·布尔发明的直言三段论逻辑系统,他尝试结合“空集”,就是说不存在的实体的类,比如圆四边形,而不求助于不可确定的真值。

在布尔逻辑中,全称陈述“所有S都是P”和“没有S是P”(在亚里士多德方案中是不同真的),在假定S的集合是空集的时候是可共存的。“所有S都是P”,被解释为意味着:“没有东西既是S又是非P”;“没有S是P”,就是说:“没有东西既是S又是P”。例如,因为没有东西是圆四边形,所以没有东西是圆四边形并且是紫色的,和没有东西是圆四边形并且是“非”紫色的,这二者都是真的。所以,“所有圆四边形都是紫色的”和“没有圆四边形是紫色的”,这两个全称陈述都是真的。

类似的,在存在陈述“有些S是P”和“有些S不是P”之间的不同假的联系也被消解了。前者被解释为“有些东西既S又是P”,后者被解释为“有些东西既是S又是非P”,在S不存在的时候这二者明显是假的。

所以,在全称和存在陈述之间的蕴涵联系也不再成立,因为对于一个不存在的S,为真的“所有S都是P”,不蕴涵为假的“有些S是P”。亚里士多德对立四边形中,只有矛盾联系保持有效。

参见

传统逻辑三段论
形式直言三段论 | 选言三段论 | 假言三段论 | 复合三段论 | 准三段论 | 统计三段论
其他对立四边形 | 布尔三段论 | 三段论谬论