跳至內容

重力紅移

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
質量龐大的星球上所發出的光遠離星球時,會發生紅位移——從藍色偏到紅色。

重力紅移(Gravitational redshift)或稱引力紅移指的是光波或者其他波動從引力場源(如巨大星體或黑洞)遠離時,整體頻譜會往紅色端方向偏移,亦即發生「頻率變低,波長增長」的現象。原因是因為光子的能量從一開始的能量 在經過一段距離後,一部分轉化為重力勢能 而光子的能量正比於頻率。[1]

定義

重力紅移的程度常標記為變數z

其中是極遠處觀測者所測量到的光子波長;是重力源如星球,其上的光源發出時所測量到的光子波長。

重力紅移的現象可以從廣義相對論預測:

其中

  • 是被自由空間中,極遠處觀察者所測到因重力而產生的譜線位移量。
  • G是牛頓重力常數
  • 是光所逃離的星體質量
  • 是真空中光速
  • 是從星體中心算起的徑向距離。


幾項要點

  • 光線的接收端(遠方的觀察者)必須處在較高的重力勢才能觀察到紅移。一般討論下,觀察者處在無限遠處,重力勢定為0,是高於星球表面的重力勢的。
  • 許多大學的實驗結果支持重力紅移的存在。
  • 重力紅移不僅僅是廣義相對論獨有的預測。其他重力理論也支持重力紅移,雖然解釋上會有所不同。

最早的證實

1959年龐德-雷布卡實驗英語Pound–Rebka experiment展示了譜線重力紅移的存在[2]。此由哈佛大學萊曼物理實驗室的科學家所記載。這個實驗團隊在1965年發表了更加精確的引力紅移的測量。

應用

由於如地球等行星質量並不算大,以致於重力紅移現象不顯著,故近地通訊並沒有針對重力紅移的修正需求。

重力紅移的主要應用是在天文學研究上,透過一些特定原子光譜的紅移,可以估計星球質量。

精確解

重力紅移的精確解(exact solution)條列如下表:

不旋轉 旋轉
不帶電 史瓦西度規 克爾度規 (Kerr metric)
帶電 萊斯納-諾德斯特洛姆度規 (Reissner-Nordström metric) 克爾-紐曼度規 (Kerr-Newman metric)

較常用到的重力紅移精確解是針對非轉動、不帶電、球對稱的質量體(即對應於史瓦西度規)。 方程式的形式是:

其中

  • 是觀測者的徑向坐標(類比於牛頓力學中從物體中心算起的距離,但事實上是史瓦西坐標),
  • 是真空中光速

重力紅移 與 重力時間展長

若利用狹義相對論相對論性多普勒關係,來計算能量與頻率的變動(假設沒有令情況更複雜的路徑相依效應,比如旋轉黑洞參考系拖曳效應),則重力紅移和藍移頻率比值會互為倒數,提示了所見的頻率改變對應於不同處時鐘速率不同

參考系拖曳效應造成的路經相依效應,若被考慮進來,則可能使這種分析方法失效,並且使得要建立起廣域皆認同的各處時鐘速率差異變得困難,雖然並非不能達到。

重力紅移所指的是觀察到的,而引力時間膨脹,則是用以指背後發生機制的推論(處於重力場中的發光源,由於它的時系比較慢,故它發出來的光頻,本來就會比較低)。

參考文獻

  1. ^ D. C. Chang. A quantum mechanical interpretation of gravitational redshift of electromagnetic wave. Optik. 2018, 174: 636–641. doi:10.1016/j.ijleo.2018.08.127. 
  2. ^ R. V. Pound; G. A. Rebka, Jr. Gravitational Red-Shift in Nuclear Resonance. Phys. Rev. Lett. 1959, 3: 429. 

外部連結