跳至內容

緊化

維基百科,自由的百科全書

數學中,緊化compactification)是將一個拓撲空間擴大為的過程或結果。緊化的方法有多種,但每一種方法都是以某種方式添加「無窮遠點」控制「跑向無窮遠」的點或阻止這樣的「逃逸」。

一個例子

考慮帶有通常拓撲的實數線。這個空間不是緊的;在某種意義上說,點向左或向右可以跑向無窮遠。可以通過添加一個「無窮遠點」,我們記作 ∞,將其變為一個緊空間。所得的緊化可以想象為一個圓周(作為歐幾里得平面的有界閉子集它是緊的)。實線上每個跑向無窮的序列在緊化中將收斂到 ∞。

直覺上,這個過程可視為:首先將實數線收縮為 x-軸上的開區間 (-π,π);然後將這個區間的兩端向上(y-軸正方向)彎曲,並移動使它們靠近,直到得到一個去掉一點(最上點)的圓周。這個點是我們的新點 ∞ 無窮遠點,將它添進來成為一個完整的緊圓周。

稍微正式一點:我們將單位圓周上的點以角度表示,在弧度下,取從 -π 到 π。將每個這樣的點 θ 與實數線上對應的 tan(θ/2) 等同。這個函數在點 π/2 沒有定義,因為 tan(π/2) 沒有定義;將這個點等同於我們的 ∞。

因為正切函數於其反函數都是連續的,我們的等同函數是實數線與去掉 ∞ 的單位圓周間的同胚。我們所構造的c稱為實數線的亞歷山德羅夫單點緊化,更一般的討論見下。也可以增添兩個點 +∞ 和 -∞ 將實數線緊化,得到擴展的實數軸

定義

拓撲空間 X 作為稠密子集嵌入一個緊空間稱為 X 的一個緊化。將拓撲空間嵌入緊空間中經常有用,因為緊空間有一些特殊性質。

嵌入緊豪斯多夫空間可能特別讓人感興趣。因為每個緊豪斯多夫空間是一個吉洪諾夫空間,而吉洪諾夫空間的每個子空間是吉洪諾夫的,我們得出每個有豪斯多夫緊化的空間必須是吉洪諾夫空間。事實上,其逆亦真;吉洪諾夫空間是存在豪斯多夫緊化的充分必要條件。

很多有趣的非緊空間確實有特別類型的緊化,這個事實使緊化成為拓撲學中的常用技巧。

亞歷山德羅夫單點緊化

對一個拓撲空間 X,它的(亞歷山德羅夫)單點緊化 αX 是通過添加額外一點 ∞(通常叫做無窮遠點)得到的,定義新空間的開集X 中的開集以及具有 G U {∞} 形式的集合,這裡 GX 的一個子集使得 X \ G 閉且緊。X 的單點緊化是豪斯多夫的當且僅當 X 是豪斯多夫的且局部緊

斯通–切赫緊化

特別使人感興趣的是豪斯多夫緊化,即緊化中緊空間是豪斯多夫的。一個拓撲空間有豪斯多夫緊化當且僅當它是吉洪諾夫的。在這種情形,存在惟一(差一個同胚)「最一般的」豪斯多夫緊化,X斯通-切赫緊化,記作 βX。空間 βX泛性質刻畫,任何從 X 到一個緊豪斯多夫空間 K連續函數可以惟一地延拓為從 βXY 的連續函數。更確切地說, βX 是一個包含 X 的緊豪斯多夫空間使得 X 上由 βX 誘導的拓撲與 X 上本來的拓撲相同,且對任何連續映射 f:XK,這裡 K 是一個緊豪斯多夫空間,存在惟一連續映射 gXK 使得 g 限制在 X 上等同於 f

斯通–切赫緊化可具體地構造如下:設 C 是從 X 到閉區間 [0,1] 的連續函數集合。則 X 中每一點可與 C 上一個取值函數等同。這樣 X 可與 [0,1]C 的一個子集等價,這裡 [0,1]C 是從 C 到 [0,1] 的所有函數集合。由吉洪諾夫定理後者是緊的,X閉包作為那個空間的子集也是緊的。這就是斯通–切赫緊化。

射影空間

實射影空間 RPn 是歐幾里得空間 Rn 的一個緊化。對 Rn 中可能「逃逸」的每個「方向」,添加了一個無窮原點(但每個方向與其反方向等同)。我們上面構造的 R 的亞歷山德羅夫單點緊化事實上同胚於 RP1。但是注意射影平面 RP2 不是平面 R2 的單點緊化,因為添加了不止一點。

復射影空間 CPn 也是 Cn 的一個緊化;平面 C 的亞歷山德羅夫單點緊化是(同胚於)復射影直線 CP1,它可等價於黎曼球面

轉向射影空間是代數幾何中的一個基本工具,因為添加了無窮遠點後許多定理有更簡單的表述。例如,RP2 中任何兩條不同直線恰好交於一點,而在 R2 中不成立。

李群的緊化與離散子群

李群離散子群的研究中,陪集商空間通常為更精細緊化之候選,在更豐富的層次上保持結構而不止是拓撲。

例如模曲線是在每個尖點添加一點,使其成為黎曼曲面(而且因為它們是緊的,故為代數曲線)。這裡尖點有一個好理由:曲線參數化了一個空間,這些格可以退化(跑向無窮遠),通常有許多方式(考慮到一些「層次」的輔助結構)。尖點代表了這些指向無窮的不同方向。

這是平面中的格。在 n-維歐幾里得空間中也可提出同樣的問題,例如關於 GLn(R)/GLn(Z)。這是較難緊化的。現在可以利用一個一般的定理,博雷爾–塞爾緊化Borel-Serre compactification)。

其它緊化理論