在数学中,若一个二维平面上的多边形的每条边都能与其内部的一个圆形相切,该圆就是所谓的多边形的内切圆,这时称这个多边形为圆外切多边形。它亦是多边形内部最大的圆形。内切圆的圆心被称为该多边形的内心。
一个多边形至多有一个内切圆,也就是说对于一个多边形,它的内切圆,如果存在的话,是唯一的。并非所有的多边形都有内切圆。三角形和正多边形一定有内切圆。拥有内切圆的四边形被称为圆外切四边形。
三角形的内切圆
任何三角形都有内切圆。这个内切圆的圆心称为内心,一般标记为I,是三角形内角平分线的交点[1]。在三线坐标,内心是1:1:1。
性质
内切圆的半径为,当中表示三角形的面积,a、b、c为三角形的三个边长。
以内切圆和三角形的三个切点为顶点的三角形是的内接三角形之一。的内切圆就是的外接圆。而、和三线交于一点,它们的交点就是热尔岗点(Gergonne point)。内切圆与九点圆相切,切点称作费尔巴哈点(见九点圆)。
若以三角形的内切圆为反演圆进行反演,则三角形的三条边和外接圆会分别变为半径相等的四个圆(半径都等于内切圆半径的一半)。[2]
三角形的外接圆半径R、内切圆半径r 以及内外心间距OI 之间有如下关系:
- [3]
直角三角形两股和等于斜边长加上该三角形内切圆直径
由此性质再加上勾股定理,可推得:
在直角座标系中,若顶点的座标分别为、、,则内心的座标为:
- [4]
四边形的内切圆
不是所有的四边形都有内切圆,拥有内切圆的四边形称为圆外切四边形。凸四边形ABCD有内切圆当且仅当两对对边之和相等:,此命题称为皮托定理。圆外切四边形的面积和内切圆半径的关系为:
,其中s 为半周长。
同时拥有内切圆和外接圆的四边形称为双心四边形。这样的四边形有无限多个。若一个四边形为双心四边形,那么其内切圆在两对对边的切点的连线相互垂直。而只要在一个圆上选取两条相互垂直的弦,并过相应的顶点做切线,就能得到一个双心四边形。
正多边形的内切圆
正多边形必然有内切圆,而且其内切圆的圆心和外接圆的圆心重合,都在正多边形的中心。边长为a 的正多边形的内切圆半径为:
其内切圆的面积为:
内切圆面积与正多边形的面积之比为:
故此,当正多边形的边数趋向无穷时,
参考文献
参见
|
---|
X(1)-X(10) | |
---|
X(11)-X(20) | |
---|
X(21)- | |
---|