复空间赫尔维茨ζ函数
赫尔维茨ζ函数 (Hurwitz zeta function)定义如下
ζ
(
s
,
q
)
=
∑
n
=
0
∞
1
(
q
+
n
)
s
.
{\displaystyle \zeta (s,q)=\sum _{n=0}^{\infty }{\frac {1}{(q+n)^{s}}}.}
其中
q
{\displaystyle q}
、
s
{\displaystyle s}
都是复数,并且有
R
e
(
q
)
>
0
{\displaystyle Re(q)>0}
,
R
e
(
s
)
>
0
{\displaystyle Re(s)>0}
对于给定的q,s,此函数可以扩展到 s ≠1的亚纯函数 .
黎曼ζ函数 =
ζ
(
s
,
1
)
{\displaystyle \zeta (s,1)}
级数展开
赫尔维茨ζ函数可以展开成级数::[ 1]
ζ
(
s
,
q
)
=
1
s
−
1
∑
n
=
0
∞
1
n
+
1
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
(
q
+
k
)
1
−
s
.
{\displaystyle \zeta (s,q)={\frac {1}{s-1}}\sum _{n=0}^{\infty }{\frac {1}{n+1}}\sum _{k=0}^{n}(-1)^{k}{n \choose k}(q+k)^{1-s}.}
此级数在S空间的紧空间 子集中均匀收敛成为一个整函数 。
积分式
赫尔维茨ζ函数可以表示为下列梅林变换
ζ
(
s
,
q
)
=
1
Γ
(
s
)
∫
0
∞
t
s
−
1
e
−
q
t
1
−
e
−
t
d
t
{\displaystyle \zeta (s,q)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {t^{s-1}e^{-qt}}{1-e^{-t}}}dt}
其中
ℜ
s
>
1
{\displaystyle \Re s>1}
及
ℜ
q
>
0.
{\displaystyle \Re q>0.}
赫尔维茨公式
ζ
(
1
−
s
,
x
)
=
1
2
s
[
e
−
i
π
s
/
2
β
(
x
;
s
)
+
e
i
π
s
/
2
β
(
1
−
x
;
s
)
]
{\displaystyle \zeta (1-s,x)={\frac {1}{2s}}\left[e^{-i\pi s/2}\beta (x;s)+e^{i\pi s/2}\beta (1-x;s)\right]}
其中
β
(
x
;
s
)
=
2
Γ
(
s
+
1
)
∑
n
=
1
∞
exp
(
2
π
i
n
x
)
(
2
π
n
)
s
=
2
Γ
(
s
+
1
)
(
2
π
)
s
Li
s
(
e
2
π
i
x
)
{\displaystyle \beta (x;s)=2\Gamma (s+1)\sum _{n=1}^{\infty }{\frac {\exp(2\pi inx)}{(2\pi n)^{s}}}={\frac {2\Gamma (s+1)}{(2\pi )^{s}}}{\mbox{Li}}_{s}(e^{2\pi ix})}
对于
0
≤
x
≤
1
{\displaystyle 0\leq x\leq 1}
and s > 1成立,其中
Li
s
(
z
)
{\displaystyle {\text{Li}}_{s}(z)}
代表 多重对数 .
泰勒展开
赫尔维茨ζ函数的导数是平移:
∂
∂
q
ζ
(
s
,
q
)
=
−
s
ζ
(
s
+
1
,
q
)
.
{\displaystyle {\frac {\partial }{\partial q}}\zeta (s,q)=-s\zeta (s+1,q).}
因此赫尔维茨ζ函数的泰勒级数 可表示为:
ζ
(
s
,
x
+
y
)
=
∑
k
=
0
∞
y
k
k
!
∂
k
∂
x
k
ζ
(
s
,
x
)
=
∑
k
=
0
∞
(
s
+
k
−
1
s
−
1
)
(
−
y
)
k
ζ
(
s
+
k
,
x
)
.
{\displaystyle \zeta (s,x+y)=\sum _{k=0}^{\infty }{\frac {y^{k}}{k!}}{\frac {\partial ^{k}}{\partial x^{k}}}\zeta (s,x)=\sum _{k=0}^{\infty }{s+k-1 \choose s-1}(-y)^{k}\zeta (s+k,x).}
或
ζ
(
s
,
q
)
=
1
q
s
+
∑
n
=
0
∞
(
−
q
)
n
(
s
+
n
−
1
n
)
ζ
(
s
+
n
)
,
{\displaystyle \zeta (s,q)={\frac {1}{q^{s}}}+\sum _{n=0}^{\infty }(-q)^{n}{s+n-1 \choose n}\zeta (s+n),}
其中
|
q
|
<
1
{\displaystyle |q|<1}
.[ 2]
与Θ函數的关系
令
ϑ
(
z
,
τ
)
{\displaystyle \vartheta (z,\tau )}
代表 雅可比 Θ函數 , 则
∫
0
∞
[
ϑ
(
z
,
i
t
)
−
1
]
t
s
/
2
d
t
t
=
π
−
(
1
−
s
)
/
2
Γ
(
1
−
s
2
)
[
ζ
(
1
−
s
,
z
)
+
ζ
(
1
−
s
,
1
−
z
)
]
{\displaystyle \int _{0}^{\infty }\left[\vartheta (z,it)-1\right]t^{s/2}{\frac {dt}{t}}=\pi ^{-(1-s)/2}\Gamma \left({\frac {1-s}{2}}\right)\left[\zeta (1-s,z)+\zeta (1-s,1-z)\right]}
对于
ℜ
s
>
0
{\displaystyle \Re s>0}
and 复数z 成立,但对于 z =n 整数,则有
∫
0
∞
[
ϑ
(
n
,
i
t
)
−
1
]
t
s
/
2
d
t
t
=
2
π
−
(
1
−
s
)
/
2
Γ
(
1
−
s
2
)
ζ
(
1
−
s
)
=
2
π
−
s
/
2
Γ
(
s
2
)
ζ
(
s
)
.
{\displaystyle \int _{0}^{\infty }\left[\vartheta (n,it)-1\right]t^{s/2}{\frac {dt}{t}}=2\ \pi ^{-(1-s)/2}\ \Gamma \left({\frac {1-s}{2}}\right)\zeta (1-s)=2\ \pi ^{-s/2}\ \Gamma \left({\frac {s}{2}}\right)\zeta (s).}
其中 ζ 代表黎曼ζ函数 .
推广
正整数m的赫尔维茨ζ函数与 多伽玛函数 有下列关系:
ψ
(
m
)
(
z
)
=
(
−
1
)
m
+
1
m
!
ζ
(
m
+
1
,
z
)
.
{\displaystyle \psi ^{(m)}(z)=(-1)^{m+1}m!\zeta (m+1,z)\ .}
For negative integer −n the values are related to the Bernoulli polynomials :[ 3]
ζ
(
−
n
,
x
)
=
−
B
n
+
1
(
x
)
n
+
1
.
{\displaystyle \zeta (-n,x)=-{\frac {B_{n+1}(x)}{n+1}}\ .}
The 巴恩斯ζ函数 是赫尔维茨ζ函数的推广。
The 勒奇超越函数 也是赫尔维茨ζ函数的推广:
Φ
(
z
,
s
,
q
)
=
∑
k
=
0
∞
z
k
(
k
+
q
)
s
{\displaystyle \Phi (z,s,q)=\sum _{k=0}^{\infty }{\frac {z^{k}}{(k+q)^{s}}}}
即:
ζ
(
s
,
q
)
=
Φ
(
1
,
s
,
q
)
.
{\displaystyle \zeta (s,q)=\Phi (1,s,q).\,}
赫尔维茨ζ函数与超几何函数 的关系:
ζ
(
s
,
a
)
=
a
−
s
⋅
s
+
1
F
s
(
1
,
a
1
,
a
2
,
…
a
s
;
a
1
+
1
,
a
2
+
1
,
…
a
s
+
1
;
1
)
{\displaystyle \zeta (s,a)=a^{-s}\cdot {}_{s+1}F_{s}(1,a_{1},a_{2},\ldots a_{s};a_{1}+1,a_{2}+1,\ldots a_{s}+1;1)}
其中
a
1
=
a
2
=
…
=
a
s
=
a
and
a
∉
N
and
s
∈
N
+
.
{\displaystyle a_{1}=a_{2}=\ldots =a_{s}=a{\text{ and }}a\notin \mathbb {N} {\text{ and }}s\in \mathbb {N} ^{+}.}
Meijer G函数
ζ
(
s
,
a
)
=
G
s
+
1
,
s
+
1
1
,
s
+
1
(
−
1
|
0
,
1
−
a
,
…
,
1
−
a
0
,
−
a
,
…
,
−
a
)
s
∈
N
+
.
{\displaystyle \zeta (s,a)=G\,_{s+1,\,s+1}^{\,1,\,s+1}\left(-1\;\left|\;{\begin{matrix}0,1-a,\ldots ,1-a\\0,-a,\ldots ,-a\end{matrix}}\right)\right.\qquad \qquad s\in \mathbb {N} ^{+}.}
参考文献
^ Hasse, Helmut, Ein Summierungsverfahren für die Riemannsche ζ-Reihe , Mathematische Zeitschrift , 1930, 32 (1): 458–464 [2015-02-04 ] , JFM 56.0894.03 , doi:10.1007/BF01194645 , (原始内容存档 于2017-08-05)
^ Vepsta卄s, Linas. An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions. 2007. arXiv:math.CA/0702243 .
^ Apostol (1976) p.264
延伸阅读
Davenport, Harold . Multiplicative number theory. Lectures in advanced mathematics 1 . Chicago: Markham. 1967. Zbl 0159.06303 .
Miller, Jeff; Adamchik, Victor S. Derivatives of the Hurwitz Zeta Function for Rational Arguments . Journal of Computational and Applied Mathematics. 1998, 100 : 201–206 [2015-02-04 ] . doi:10.1016/S0377-0427(98)00193-9 . (原始内容存档 于2010-03-16).
Vepstas, Linas. The Bernoulli Operator, the Gauss–Kuzmin–Wirsing Operator, and the Riemann Zeta (PDF) . [2015-02-04 ] . (原始内容存档 (PDF) 于2021-03-10).
Mező, István; Dil, Ayhan. Hyperharmonic series involving Hurwitz zeta function. Journal of Number Theory. 2010, 130 (2): 360–369. doi:10.1016/j.jnt.2009.08.005 .