统计流形
数学中,统计流形是每点都代表一概率分布的黎曼流形,为信息几何提供了研究对象。费希尔信息度量提供了流形上的度量张量。根据这定义,对数似然函数是可微映射,分数是包含映射。[1]
示例
所有正态分布可视为2维参数空间,参数为期望与方差。由费希尔信息矩阵给出的黎曼度量可得统计流形,其几何模型是双曲几何。通过费希尔信息推断参数方程而非从似然函数出发,是绘制流形的一种方法。
统计流形的简单例子是物理学中的正则系综:是1维流形,温度T是坐标。对任何常温T,都有概率空间:因此对原子气体而言,它就是原子速度的概率分布,会随T的变化而变化。
另一个简单例子来自医学,即病人治愈概率分布与给药量的关系。在固定剂量下,有些病人的病情有所改善,有些则没有,这就是基本概率空间。若改变剂量,结果概率也会变化,因此剂量就是流形上的坐标。要成为微分流形,就要根据剂量的任意微小变化测量结果,这并不实际可行,除非已有了剂量-反映数学模型,其中剂量可以任意变化。
定义
令X为可定向流形,使为X上的测度。等价地,令为关于的概率空间,其中σ-代数与概率。
X的统计流形S(X)定义为X上所有测度(σ-代数不变)。注意这空间是无穷维的,通常认为是弗雷歇空间。S(X)的点都是测度。
与其处理无穷维空间S(X),不如处理有限维子流形,由一组由光滑、连续变化的参数参数化的概率分布给出定义即可。也就是说,只考虑由参数选择的测度。若参数是n维的,那么子流形一般也是n维。所有有限维统计流形都可这样理解。[需要解释]
另见
参考文献
- ^ Murray, Michael K.; Rice, John W. The definition of a statistical manifold. Differential Geometry and Statistics. Chapman & Hall. 1993: 76–77 [2023-11-09]. ISBN 0-412-39860-5. (原始内容存档于2023-11-09).
这是一篇關於幾何學的小作品。您可以通过编辑或修订扩充其内容。 |
这是一篇與統計學相關的小作品。您可以通过编辑或修订扩充其内容。 |