归纳偏置
歸納偏置(英語:Inductive bias),指的是學習演算法中,當學習器去預測其未遇到過的輸入結果時,所做的一些假設的集合(Mitchell, 1980)。
機器學習試圖去建造一個可以學習的演算法,用來預測某個目標的結果。要達到此目的,要給於學習演算法一些訓練样本,样本說明輸入與輸出之間的預期關係。然后假设學習器在预测中逼近正确的结果,其中包括在訓練中未出現的样本。既然未知状况可以是任意的結果,若沒有其它額外的假設,這任務就無法解決。這種關於目標函數的必要假設就称为歸納偏置(Mitchell, 1980; desJardins and Gordon, 1995)。
一個典型的歸納偏置例子是奧卡姆剃刀,它假設最簡單而又一致的假设是最佳的。這裡的一致是指學習器的假设會對所有樣本產生正確的結果。
歸納偏置比較正式的定義是基於數學上的邏輯。這裡,歸納偏置是一個與訓練样本一起的邏輯式子,其邏輯上會蘊涵學習器所產生的假设。然而在实际应用中,這種嚴謹形式常常無法適用。在有些情况下,学习器的歸納偏置可能只是一個很粗糙的描述(如在人工神經網路中),甚至更加简单。
歸納偏置的種類
以下是機器學習中常見的歸納偏置列表:
- 最大條件獨立性(conditional independence):如果假說能轉成貝葉斯模型架構,則試著使用最大化條件獨立性。這是用於朴素貝葉斯分類器(Naive Bayes classifier)的偏置。
- 最小交叉驗證误差:當試圖在假說中做選擇時,挑選那個具有最低交叉驗證误差的假說,雖然交叉驗證看起來可能無關偏置,但天下没有免费的午餐理論顯示交叉驗證已是偏置的。
- 最大邊界:當要在兩個類別間畫一道分界線時,試圖去最大化邊界的寬度。這是用於支持向量機的偏置。這個假設是不同的類別是由寬界線來區分。
- 最小描述長度(Minimum description length):當构成一個假设時,試圖去最小化其假设的描述長度。假设越简单,越可能為真的。見奧卡姆剃刀。
- 最少特徵數(Minimum features):除非有充分的證據顯示一個特徵是有效用的,否則它應当被刪除。這是特徵選择(feature selection)算法背後所使用的假設。
- 最近鄰居:假設在特徵空間(feature space)中一小區域內大部分的样本是同屬一類。給一個未知類別的样本,猜測它與它最緊接的大部分鄰居是同屬一類。這是用於最近鄰居法的偏置。這個假設是相近的样本應傾向同屬於一類別。
偏置变换
雖然大部分的學習演算法使用固定的偏置,但有些算法在获得更多数据時可以變換它們的偏置。這不會取消偏置,因為偏置变换的過程本身就是一種偏置。
另見
參考文獻
desJardins, M., and Gordon, D.F. (1995). Evaluation and selection of biases in machine learning (页面存档备份,存于互联网档案馆). Machine Learning Journal, 5:1--17, 1995.
Mitchell, T.M. (1980). The need for biases in learning generalizations (页面存档备份,存于互联网档案馆). CBM-TR 5-110, Rutgers University, New Brunswick, NJ.
Utgoff, P.E. (1984). Shift of bias for inductive concept learning. Doctoral dissertation, Department of Computer Science, Rutgers University, New Brunswick, NJ.