跳转到内容

梅赛德斯·奔驰仿生车

维基百科,自由的百科全书
Mercedes-Benz Bionic
概览
制造商Mercedes-Benz
生产日期Concept car (2005)
动力系统
引擎1.9-liter four-cylinder direct-injection turbodiesel. 138 hp(103 kW)
变速器Autotronic CVT transmission
规格
轴距101英寸(2,565 mm)
长度167英寸(4,242 mm)
宽度71.5英寸(1,816 mm)
高度62.8英寸(1,595 mm)
整备质量2,425磅(1,100公斤)
与Cd 0.12的流线型半体进行比较。
黄色箱鲀

梅赛德斯·奔驰仿生车Mercedes-Benz Bionic)是梅賽德斯-賓士集团旗下戴姆勒克莱斯勒股份公司推出的一款概念車。它于2005年在华盛顿哥伦比亚特区举行的戴姆勒-克莱斯勒创新研讨会上首次推出。仿生车以黄箱鲀Ostracion cubicus)为原型,[1]采用选择性催化还原技术氮氧化物排放量降低了80%。

引擎和性能

仿生车搭载103千瓦的直喷柴油引擎,平均燃油经济性为54.7MPG(~4.3 L/100 公里)。[2]这款发动机的输出功率约为140 hp(104 kW),转速略高于221 ft·lbf(300 N·m)扭矩约为 1600 rpm 。 仿生车从0加速至97 km/h 大约需要八秒,最高速度略高于190 km/h(118 mph) 。

设计

该车的外观设计以生活在珊瑚礁中的海洋鱼类粒突箱鲀Ostracion cubicus)为原型。梅赛德斯-奔驰仿生车之所以以其为原型,是因为粒突箱鲀的身体形状和外骨骼的坚硬程度决定了其低阻力係數,这也影响了该车与众不同的外观。[3]人们认为,箱鱼的外形可以提高空气动力学性能和稳定性。[4]然而,2015 年,《皇家学会界面杂志》上的一篇论文称,“与更普遍的鱼类体形相比,所研究的两种黄箱鱼的减阻性能相对较低”。[5][6]设计的其他部分还包括后轮部分采用塑料材质,并将其视为轻型车辆。梅赛德斯-奔驰公司报告的风阻系数为 0.19;相比之下,Cd值最低的量产车是通用汽车 EV1,为 0.195。虽然仿生车的内部容积比EV1大得多,但由于阻力是面积和阻力系数的乘积,Bionic更大的正面面积使得EV1整体上更符合空气动力学原理。

该车可容纳四人。[2]

参考

  1. ^ "Bionic" Car Fueled by Fishy Ideas. National Geographic. 15 June 2005 [18 October 2013]. (原始内容存档于19 October 2013). 
  2. ^ 2.0 2.1 Padeanu, Adrian. 2005 Mercedes Bionic: Concept We Forgot. Motor1.com. 2 January 2019 [22 January 2019].  引用错误:带有name属性“motor1”的<ref>标签用不同内容定义了多次
  3. ^ Kozlov, Andrei; Chowdhury, Harun; Mustary, Israt; Loganathan, Bavin; Alam, Firoz. Bio-Inspired Design: Aerodynamics of Boxfish. Procedia Engineering. 2015, 105: 323–328. ISSN 1877-7058. doi:10.1016/j.proeng.2015.05.007可免费查阅. 
  4. ^ The Energy-Efficient Boxfish. Awake!. Vol. 90 no. 7 (Watchtower Bible and Tract Society of New York). July 2009: 10 [22 January 2019]. ISSN 0005-237X. Engineers believe that the boxfish provides the secret to producing a safer, more fuel-efficient, yet lightweight, vehicle. “Quite frankly,” says research and development chief Dr. Thomas Weber, “we were surprised when this clumsy-looking fish, of all things, became our model for designing an aerodynamic and fuel-efficient car.” 
  5. ^ Jake, Buehler. A Real Drag. Mercedes-Benz modeled a car on the boxfish. Only it completely misunderstood the boxfish.. Slate. 11 March 2015 [22 April 2020]. The boxfish does not lament the absence of a course correction mechanism, as its instability is one of its greatest assets on the reef, permitting it to swiftly whirl wherever it pleases, which, much to my aggravation, always seems to be as far away from me as possible. The boxfish carapace may still find utility in bionics, but based on what we now know about its instability, perhaps a better place to start would be with spinning, vomit-soaked amusement park rides. 
  6. ^ S., Van Wassenbergh; van Manen, K. Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability. Journal of the Royal Society Interface. 6 February 2015, 12 (103) [22 April 2020]. PMID 25505133. doi:10.1098/rsif.2014.1146. hdl:10067/1212670151162165141可免费查阅. Firstly, despite serving as a model system in aerodynamic design, drag-reduction performance was relatively low compared with more generalized fish morphologies. Secondly, the current theory of course stabilization owing to flow over the boxfish carapace was rejected, as destabilizing moments were found consistently. This solves the boxfish swimming paradox: destabilizing moments enhance manoeuvrability, which is in accordance with the ecological demands for efficient turning and tilting.