跳转到内容

填充維度

维基百科,自由的百科全书

數學中 ,填充维度是一種可用于定义度量空间子集维度的概念。某種程度上,填充維度和郝斯多夫維度對偶的,因為填充維度是利用「填充」給定的子集來定義,而郝斯多夫維度是利用「覆蓋」給定的子集來定義。填充維度C.Tricot Jr.在1982年引入。

定義

是度量空間且,那麼對,定義維的填充前測度packing pre-measure)為

上式只是一个前測度,而非真正的测度填充測度的定義是

即填充測度是其可數覆蓋的填充前測度和的最大下界。

如此一來,的填充維度定義為

示例

以下示例是填充維度與郝斯多夫維度不相等最简单的情况。

考慮序列使得。定義一系列的緊緻如下:

  • 對每個)的線段,去除中間長為的開區間,以得到兩個長為長為的閉區間。

現在定義。可以證明

容易知道對給定的數,我們可以取序列使得上面兩個維度分別是

參見

参考資料

  • Tricot, Jr., Claude. Two definitions of fractional dimension. Mathematical Proceedings of the Cambridge Philosophical Society. 1982, 91 (1): 57–74. doi:10.1017/S0305004100059119.