跳转到内容

不等邊三角形

本页使用了标题或全文手工转换
维基百科,自由的百科全书
不等邊三角形。具有三條不等長的邊和3個不相等的角

幾何學中,不等邊三角形又稱不規則三角形[1],是指三條的長度都不同的三角形[2][3][4][5]而滿足三邊不等長的三角形同時也會滿足三個角不相等[6],反之亦然。[7] 大多數隨機繪畫的三角形都是不等邊的。不等邊三角形的內角總是各不相同。反過來同樣成立:如果一個三角形的三個內角各不相同,這個三角形便是不等邊三角形,而且它的三條邊也是長度都不相同。[8][9]不等邊三角形可以是直角三角形、鈍角三角形或銳角三角形。[10]

性質

不等邊三角形是所有三角形分類中,對稱性最低的,其不具備點對稱點,也不具備線對稱軸。不等邊三角形大部分的性質皆與三角形相同,例如面積公式等。[11]

與其他三角形的關聯

欧拉图展示不等邊三角形與其他三角型分類的關聯。可以看到不等邊三角形與等腰三角形不交集,也與等邊三角形不交集。而不等邊三角形允許直角,因此直角三角形有可能是不等邊三角形

不等邊三角形三個內角都不相等。如果一個三角形有兩個內角角度是相同的,這個三角形將是一個等腰三角形,並且會有其中兩條邊的長度相同。同樣地,如果一個三角形所有的內角角度是相同的,這個三角形將是一個等邊三角形,並且所有邊的長度相同。因此不等邊三角形與等腰三角形的關聯為互斥集[12]

不等邊三角形的條件僅有三邊不等長若且唯若三個角不相等,並未限制角的大小,意味著角的大小可以是鈍角、直角或銳角。[13]部分教科書會限制不等邊三角形的角不能為直角,將直角三角形獨立成一類三角形另外討論。[12]

任意三角形

任意三角形是指不給邊長及角度下任何限制的三角形,其有可能是不等邊三角形、等腰三角形、等邊三角形、直角三角形、鈍角三角形或銳角三角形。部分教科書會將任意三角形定義為不等邊三角形,[14]雖然任意三角形同樣是指隨意的三角形,但不應與不等邊三角形混淆,因為任意三角形並未限制邊是否可以等長,而不等邊三角形在嚴謹的定義下應必須滿足三邊不等長的條件。[2]否則可能會導致一些證明過程出現矛盾。[15]

一般而言,任意三角形不會包含退化三角形

相關幾何體

不等面四面體

不等邊三角形也可以推廣到三維空間中,其三維類比為不等面四面體,或不規則四面體。而不等面四面體的構成面不一定是不等邊三角形。[16]

參見

參考資料

  1. ^ 不等邊三角形. 國家教育研究院. [2021-08-16]. (原始内容存档于2021-08-16). 
  2. ^ 2.0 2.1 Weisstein, Eric W. (编). Scalene Triangle. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  3. ^ 不等邊三角形. newasiabooks.com. [2021-08-22]. (原始内容存档于2021-08-23). 
  4. ^ 不等边三角形. drhuang.com. [2023-01-09]. (原始内容存档于2022-10-27). 
  5. ^ Mathurin-Jacques Brisson. Diccionario universal de física 9. Imprenta Real. 1802: 154 (西班牙语). 
  6. ^ Scalene Triangle. varsitytutors.com. [2023-01-09]. (原始内容存档于2022-10-27). 
  7. ^ Özkaya, N. and Leger, D. and Goldsheyder, D. and Nordin, M. Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation. Springer International Publishing. 2016: 391. ISBN 9783319447384. 
  8. ^ Scalene Triangle. mathopenref.com. [2016-03-11]. (原始内容存档于2013-12-03). 
  9. ^ Triangles - Equilateral, Isosceles and Scalene. www.mathsisfun.com. [2020-09-01]. (原始内容存档于2021-07-26). 
  10. ^ Triángulo escaleno. definicion.de. [2023-01-09]. (原始内容存档于2022-10-28). 
  11. ^ Wolfram, Stephen. "scalene triangle". from Wolfram Alpha: Computational Knowledge Engine, Wolfram Research (英语). 
  12. ^ 12.0 12.1 三角形之間的關係 (PDF). classroom.com.hk. [2021-08-22]. (原始内容存档 (PDF)于2021-08-23). 
  13. ^ Triangles. infoplease.com. [2021-08-22]. (原始内容存档于2021-08-22). 
  14. ^ 三角形. gtes.tp.edu.tw. [2021-08-22]. (原始内容存档于2021-08-23). 
  15. ^ 林柏佐. 任何三角形都是等腰三角形? (PDF). ntnu.edu.tw. [2021-08-22]. (原始内容存档 (PDF)于2021-04-20). 
  16. ^ Regular and irregular tetrahedrons. Math.net. [2021-08-22]. (原始内容存档于2020-12-01). 

外部連結