MNase-seq
MNase-seq是micrococcal nuclease digestion with deep sequencing(微球菌核酸酶消化結合深度測序)的縮寫[1][2][3],是2008年以來用於檢測人類基因組上核小體占用情況的分子生物學技術[1]。在2009年才定名「MNase-seq」[2]。簡而言之,該技術依賴於來自金黃色葡萄球菌的非特異性核酸內外切酶微球菌核酸酶,用其結合和切割染色質上未結合蛋白質的DNA區域。與此同時,此種酶不消化與組蛋白或其他染色質結合蛋白(例如轉錄因子)結合的DNA。然後從蛋白質中純化未切割的DNA,並通過一種或多種不同的下一代測序方法進行測序[4]。
MNase-seq是用於通過分析染色質可及性來評估表觀基因組狀態的四類方法之一。其他三種技術是DNase-seq、FAIRE-seq和ATAC-seq[3]。MNase-seq主要用於對由組蛋白或其他染色質結合蛋白結合的DNA區域進行測[1]序,其他三種測序的對象通常分別是:脫氧核糖核酸酶I過敏位點(DHS)[5]、測未結合的DNA的染色質蛋白質[6]和鬆散包裹的染色質區域(通過標記物的轉座測定)[7][8]。[3]
歷史
1956年,首次在金黃色葡萄球菌中發現微球菌核酸酶[9],蛋白質於1966年結晶檢測[10],特徵於1967年被闡明[11]。染色質的MNase消化是染色質結構早期研究的關鍵;用於確定染色質的每個核小體單位由大約200bp的DNA組成[12]。這與奧林斯和奧林斯的「串珠」模型一起[13],證實了科恩伯格關於基本染色質結構的設想[14]。進一步研究發現,MNase無法降解短於~140bp的與組蛋白結合的DNA,而DNase I和II可以將結合的DNA降解至低至10bp[15][16]。這最終闡明了核小體核心由~146bp的DNA包裹著[17],~50bp的接頭DNA連接每個核小體[18],並且10個連續的DNA鹼基對間隔地與核小體的核心緊密結合[16]。
微球菌核酸酶消化自特徵於1967年被闡明以來,除了用於研究染色質結構外,一直用於寡核苷酸測序實驗[19]。由於MNase優先消化腺嘌呤和胸腺嘧啶豐富的區域[20],此技術用來分析無染色質序列,例如酵母(釀酒酵母)粒線體DNA[21]以及噬菌體DNA[22][23]。在1980年代初期,MNase消化被用於確定成熟SV40[24]、果蠅(黑腹果蠅)[25]、酵母[26]、和猴子[27]等染色體的核小體定相和相關DNA。1985年,第一次使用這種消化來研究染色質可及性與人類基因表達的相關性。在這項研究中,核酸酶用於檢測某些致癌序列與染色質和核蛋白的關聯[28]。在沒有測序或陣列信息的情況下,利用MNase消化來確定核小體定位的研究一直持續到2000年代初期[29]。
隨著1990年代末和2000年代初全基因組測序的出現,將純化的DNA序列與釀酒酵母[30]、秀麗隱杆線蟲[31]、黑腹果蠅[32]、擬南芥[33]、小鼠[34]和人類[35]的真核基因組進行比較成為可能。MNase消化首先被應用於釀酒酵母[36]和秀麗隱杆線蟲[37]的全基因組核小體占據研究。MNase消化處理後,通過微陣列進行分析,確定哪些DNA區域富含MNase抗性核小體。基於MNase的微陣列分析通常用於酵母[38][39]的全基因組範圍和人類的有限基因組區域[40][41]以確定核小體定位,這可用作轉錄失活的推斷。
2008年開發出下一代測序時,MNase消化與高通量測序(即Solexa/Illumina測序)相結合以研究人類全基因組範圍內的核小體定位[1]。一年後,術語「MNase-Seq」和「MNase-ChIP」最終被創造出來,用於染色質免疫沉澱的微球菌核酸酶消化[2]。自2008年首次應用以來[1],MNase-seq已被用於對與核小體占據和跨真核生物表觀基因組學相關的DNA進行深度測序[4]。截至2020年2月,MNase-seq仍用於測定染色質可及性[42]。
Description
Chromatin is dynamic and the positioning of nucleosomes on DNA changes through the activity of various transcription factors and remodeling complexes, approximately reflecting transcriptional activity at these sites. DNA wrapped around nucleosomes are generally inaccessible to transcription factors.[43] Hence, MNase-seq can be used to indirectly determine which regions of DNA are transcriptionally inaccessible by directly determining which regions are bound to nucleosomes.[4]
In a typical MNase-seq experiment, eukaryotic cell nuclei are first isolated from a tissue of interest. Then, MNase-seq uses the endo-exonuclease micrococcal nuclease to bind and cleave protein-unbound regions of DNA of eukaryotic chromatin, first cleaving and resecting one strand, then cleaving the antiparallel strand as well.[2] The chromatin can be optionally crosslinked with formaldehyde.[44] MNase requires Ca2+ as a cofactor, typically with a final concentration of 1mM.[4][11] If a region of DNA is bound by the nucleosome core (i.e. histones) or other chromatin-bound proteins (e.g. transcription factors), then MNase is unable to bind and cleave the DNA. Nucleosomes or the DNA-protein complexes can be purified from the sample and the bound DNA can be subsequently purified via gel electrophoresis and extraction. The purified DNA is typically ~150bp, if purified from nucleosomes,[1] or shorter, if from another protein (e.g. transcription factors).[45] This makes short-read, high-throughput sequencing ideal for MNase-seq as reads for these technologies are highly accurate but can only cover a couple hundred continuous base-pairs in length.[46] Once sequenced, the reads can be aligned to a reference genome to determine which DNA regions are bound by nucleosomes or proteins of interest, with tools such as Bowtie.[3] The positioning of nucleosomes elucidated, through MNase-seq, can then be used to predict genomic expression[47] and regulation[48] at the time of digestion.
Extended Techniques
MNase-ChIP/CUT&RUN sequencing
Recently, MNase-seq has also been implemented in determining where transcription factors bind on the DNA.[49][50] Classical ChIP-seq displays issues with resolution quality, stringency in experimental protocol, and DNA fragmentation.[50] Classical ChIP-seq typically uses sonication to fragment chromatin, which biases heterochromatic regions due to the condensed and tight binding of chromatin regions to each other.[50] Unlike histones, transcription factors only transiently bind DNA. Other methods, such as sonication in ChIP-seq, requiring the use of increased temperatures and detergents, can lead to the loss of the factor. CUT&RUN sequencing is a novel form of an MNase-based immunoprecipitation. Briefly, it uses an MNase tagged with an antibody to specifically bind DNA-bound proteins that present the epitope recognized by that antibody. Digestion then specifically occurs at regions surrounding that transcription factor, allowing for this complex to diffuse out of the nucleus and be obtained without having to worry about significant background nor the complications of sonication. The use of this technique does not require high temperatures or high concentrations of detergent. Furthermore, MNase improves chromatin digestion due to its exonuclease and endonuclease activity. Cells are lysed in an SDS/Triton X-100 solution. Then, the MNase-antibody complex is added. And finally, the protein-DNA complex can be isolated, with the DNA being subsequently purified and sequenced. The resulting soluble extract contains a 25-fold enrichment in fragments under 50bp. This increased enrichment results in cost-effective high-resolution data.[50]
Single-cell MNase-seq
Single-cell micrococcal nuclease sequencing (scMNase-seq) is a novel technique that is used to analyze nucleosome positioning and to infer chromatin accessibility with the use of only a single-cell input.[51] First, cells are sorted into single aliquots using fluorescence-activated cell sorting (FACS).[51] The cells are then lysed and digested with micrococcal nuclease. The isolated DNA is subjected to PCR amplification and then the desired sequence is isolated and analyzed.[51] The use of MNase in single-cell assays results in increased detection of regions such as DNase I hypersensitive sites as well as transcription factor binding sites.[51]
Comparison to other Chromatin Accessibility Assays
MNase-seq is one of four major methods (DNase-seq, MNase-seq, FAIRE-seq, and ATAC-seq) for more direct determination of chromatin accessibility and the subsequent consequences for gene expression.[52] All four techniques are contrasted with ChIP-seq, which relies on the inference that certain marks on histone tails are indicative of gene activation or repression,[53] not directly assessing nucleosome positioning, but instead being valuable for the assessment of histone modifier enzymatic function.[3]
As with MNase-seq,[1] DNase-seq was developed by combining an existing DNA endonuclease[5] with Next-Generation sequencing technology to assay chromatin accessibility.[54] Both techniques have been used across several eukaryotes to ascertain information on nucleosome positioning in the respective organisms[3] and both rely on the same principle of digesting open DNA to isolate ~140bp bands of DNA from nucleosomes[1][55] or shorter bands if ascertaining transcription factor information.[45][55] Both techniques have recently been optimized for single-cell sequencing, which corrects for one of the major disadvantages of both techniques; that being the requirement for high cell input.[56][51]
At sufficient concentrations, DNase I is capable of digesting nucleosome-bound DNA to 10bp, whereas micrococcal nuclease cannot.[16] Additionally, DNase-seq is used to identify DHSs, which are regions of DNA that are hypersensitive to DNase treatment and are often indicative of regulatory regions (e.g. promoters or enhancers).[57] An equivalent effect is not found with MNase. As a result of this distinction, DNase-seq is primarily utilized to directly identify regulatory regions, whereas MNase-seq is used to identify transcription factor and nucleosomal occupancy to indirectly infer effects on gene expression.[3]
FAIRE-seq differs more from MNase-seq than does DNase-seq.[3] FAIRE-seq was developed in 2007[6] and combined with Next-Generation sequencing three years later to study DHSs.[58] FAIRE-seq relies on the use of formaldehyde to crosslink target proteins with DNA and then subsequent sonication and phenol-chloroform extraction to separate non-crosslinked DNA and crosslinked DNA. The non-crosslinked DNA is sequenced and analyzed, allowing for direct observation of open chromatin.[59]
MNase-seq does not measure chromatin accessibility as directly as FAIRE-seq. However, unlike FAIRE-seq, it does not necessarily require crosslinking,[4] nor does it rely on sonication,[3] but it may require phenol and chloroform extraction.[4] Two major disadvantages of FAIRE-seq, relative to the other three classes, are the minimum required input of 100,000 cells and the reliance on crosslinking.[6] Crosslinking may bind other chromatin-bound proteins that transiently interact with DNA, hence limiting the amount of non-crosslinked DNA that can be recovered and assayed from the aqueous phase.[52] Thus, the overall resolution obtained from FAIRE-seq can be relatively lower than that of DNase-seq or MNase-seq[52] and with the 100,000 cell requirement,[6] the single-cell equivalents of DNase-seq[56] or MNase-seq[51] make them far more appealing alternatives.[3]
ATAC-seq is the most recently developed class of chromatin accessibility assays.[7] ATAC-seq uses a hyperactive transposase to insert transposable markers with specific adapters, capable of binding primers for sequencing, into open regions of chromatin. PCR can then be used to amplify sequences adjacent to the inserted transposons, allowing for determination of open chromatin sequences without causing a shift in chromatin structure.[7][8] ATAC-seq has been proven effective in humans, amongst other eukaryotes, including in frozen samples.[60] As with DNase-seq[56] and MNase-seq,[51] a successful single-cell version of ATAC-seq has also been developed.[61]
ATAC-seq has several advantages over MNase-seq in assessing chromatin accessibility. ATAC-seq does not rely on the variable digestion of the micrococcal nuclease, nor crosslinking or phenol-chloroform extraction.[4][8] It generally maintains chromatin structure, so results from ATAC-seq can be used to directly assess chromatin accessibility, rather than indirectly via MNase-seq. ATAC-seq can also be completed within a few hours,[8] whereas the other three techniques typically require overnight incubation periods.[4][5][6] The two major disadvantages to ATAC-seq, in comparison to MNase-seq, are the requirement for higher sequencing coverage and the prevalence of mitochondrial contamination due to non-specific insertion of DNA into both mitochondrial DNA and nuclear DNA.[7][8] Despite these minor disadvantages, use of ATAC-seq over the alternatives is becoming more prevalent.[3]
參考資料
- ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, et al. Dynamic regulation of nucleosome positioning in the human genome. Cell. March 2008, 132 (5): 887–98. PMID 18329373. S2CID 13320420. doi:10.1016/j.cell.2008.02.022 .
- ^ 2.0 2.1 2.2 2.3 Kuan PF, Huebert D, Gasch A, Keles S. A non-homogeneous hidden-state model on first order differences for automatic detection of nucleosome positions. Statistical Applications in Genetics and Molecular Biology. January 2009, 8 (1): Article29. PMC 2861327 . PMID 19572828. doi:10.2202/1544-6115.1454. 溫哥華格式錯誤 (幫助)
- ^ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 Klein DC, Hainer SJ. Genomic methods in profiling DNA accessibility and factor localization. Chromosome Research. November 2019, 28 (1): 69–85. PMC 7125251 . PMID 31776829. doi:10.1007/s10577-019-09619-9 .
- ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Cui K, Zhao K. Genome-wide approaches to determining nucleosome occupancy in metazoans using MNase-Seq. Chromatin Remodeling. Methods in Molecular Biology 833. January 2012: 413–9. ISBN 978-1-61779-476-6. PMC 3541821 . PMID 22183607. doi:10.1007/978-1-61779-477-3_24.
- ^ 5.0 5.1 5.2 Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Research. June 2007, 17 (6): 877–85. PMC 3959825 . PMID 17179217. doi:10.1101/gr.5533506.
- ^ 6.0 6.1 6.2 6.3 6.4 Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Research. June 2007, 17 (6): 877–85. PMC 1891346 . PMID 17179217. doi:10.1101/gr.5533506.
- ^ 7.0 7.1 7.2 7.3 Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods. December 2013, 10 (12): 1213–8. PMC 3959825 . PMID 24097267. doi:10.1038/nmeth.2688.
- ^ 8.0 8.1 8.2 8.3 8.4 Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Current Protocols in Molecular Biology. January 2015, 109: 21.29.1–21.29.9. PMC 4374986 . PMID 25559105. doi:10.1002/0471142727.mb2129s109.
- ^ Cunningham L, Catlin BW, De Garilhe MP. A deoxyribonuclease of Micrococcus pyogenes. Journal of the American Chemical Society. September 1956, 78 (18): 4642–4645. doi:10.1021/ja01599a031.
- ^ Cotton FA, Hazen EE, Richardson DC. Crystalline extracellular nuclease of Staphylococcus aureus. The Journal of Biological Chemistry. October 1966, 241 (19): 4389–90. PMID 5922963.
- ^ 11.0 11.1 Heins JN, Suriano JR, Taniuchi H, Anfinsen CB. Characterization of a nuclease produced by Staphylococcus aureus. The Journal of Biological Chemistry. March 1967, 242 (5): 1016–20. PMID 6020427.
- ^ Noll M. Subunit structure of chromatin. Nature. September 1974, 251 (5472): 249–51. Bibcode:1974Natur.251..249N. PMID 4422492. S2CID 637383. doi:10.1038/251249a0.
- ^ Olins AL, Olins DE. Spheroid chromatin units (v bodies). Science. January 1974, 183 (4122): 330–2. Bibcode:1974Sci...183..330O. PMID 4128918. S2CID 83480762. doi:10.1126/science.183.4122.330.
- ^ Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science. May 1974, 184 (4139): 868–71. Bibcode:1974Sci...184..868K. PMID 4825889. doi:10.1126/science.184.4139.868.
- ^ Keichline LD, Villee CA, Wassarman PM. Structure of eukaryotic chromatin. Evaluation of periodicity using endogenous and exogenous nucleases. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. February 1976, 425 (1): 84–94. PMID 1247619. doi:10.1016/0005-2787(76)90218-5.
- ^ 16.0 16.1 16.2 Duerksen JD, Connor KW. Periodicity and fragment size of DNA from mouse TLT hepatoma chromatin and chromatin fractions using endogenous and exogenous nucleases. Molecular and Cellular Biochemistry. April 1978, 19 (2): 93–112. PMID 206820. S2CID 9230112. doi:10.1007/bf00232599.
- ^ Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. August 1999, 98 (3): 285–94. PMID 10458604. S2CID 14039910. doi:10.1016/s0092-8674(00)81958-3 .
- ^ Whitlock JP, Simpson RT. Removal of histone H1 exposes a fifty base pair DNA segment between nucleosomes. Biochemistry. July 1976, 15 (15): 3307–14. PMID 952859. doi:10.1021/bi00660a022.
- ^ Feldmann H. [Sequence analysis of oliogonucleotides by means of micrococcal nuclease]. European Journal of Biochemistry. July 1967, 2 (1): 102–5. PMID 6079759. doi:10.1111/j.1432-1033.1967.tb00113.x .
- ^ Wingert L, Von Hippel PH. The conformation dependent hydrolysis of DNA by micrococcal nuclease. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. March 1968, 157 (1): 114–26. PMID 4296058. doi:10.1016/0005-2787(68)90270-0.
- ^ Prunell A, Bernardi G. The mitochondrial genome of wild-type yeast cells. IV. Genes and spacers. Journal of Molecular Biology. July 1974, 86 (4): 825–41. PMID 4610147. doi:10.1016/0022-2836(74)90356-8.
- ^ Barrell BG, Weith HL, Donelson JE, Robertson HD. Sequence analysis of the ribosome-protected bacteriophase phiX174 DNA fragment containing the gene G initiation site. Journal of Molecular Biology. March 1975, 92 (3): 377–93. PMID 1095758. doi:10.1016/0022-2836(75)90287-9.
- ^ Bambara R, Wu R. DNA sequence analysis. Terminal sequences of bacteriophage phi80. The Journal of Biological Chemistry. June 1975, 250 (12): 4607–18. PMID 166999.
- ^ Hiwasa T, Segawa M, Yamaguchi N, Oda K. Phasing of nucleosomes in SV40 chromatin reconstituted in vitro. Journal of Biochemistry. May 1981, 89 (5): 1375–89. PMID 6168635. doi:10.1093/oxfordjournals.jbchem.a133329.
- ^ Samal B, Worcel A, Louis C, Schedl P. Chromatin structure of the histone genes of D. melanogaster. Cell. February 1981, 23 (2): 401–9. PMID 6258802. S2CID 42138156. doi:10.1016/0092-8674(81)90135-5.
- ^ Lohr DE. Detailed analysis of the nucleosomal organization of transcribed DNA in yeast chromatin. Biochemistry. October 1981, 20 (21): 5966–72. PMID 6272832. doi:10.1021/bi00524a007.
- ^ Musich PR, Brown FL, Maio JJ. Nucleosome phasing and micrococcal nuclease cleavage of African green monkey component alpha DNA. Proceedings of the National Academy of Sciences of the United States of America. January 1982, 79 (1): 118–22. Bibcode:1982PNAS...79..118M. PMC 345673 . PMID 6275381. doi:10.1073/pnas.79.1.118.
- ^ Kasid UN, Hough C, Thraves P, Dritschilo A, Smulson M. The association of human c-Ha-ras sequences with chromatin and nuclear proteins. Biochemical and Biophysical Research Communications. April 1985, 128 (1): 226–32. PMID 3885946. doi:10.1016/0006-291x(85)91668-7.
- ^ Goriely S, Demonté D, Nizet S, De Wit D, Willems F, Goldman M, Van Lint C. Human IL-12(p35) gene activation involves selective remodeling of a single nucleosome within a region of the promoter containing critical Sp1-binding sites. Blood. June 2003, 101 (12): 4894–902. PMID 12576336. doi:10.1182/blood-2002-09-2851 .
- ^ Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science. October 1996, 274 (5287): 546, 563–7. Bibcode:1996Sci...274..546G. PMID 8849441. S2CID 16763139. doi:10.1126/science.274.5287.546.
- ^ The C. Elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. December 1998, 282 (5396): 2012–8. Bibcode:1998Sci...282.2012.. PMID 9851916. doi:10.1126/science.282.5396.2012.
- ^ Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science. March 2000, 287 (5461): 2185–95. Bibcode:2000Sci...287.2185.. PMID 10731132. doi:10.1126/science.287.5461.2185.
- ^ The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. December 2000, 408 (6814): 796–815. Bibcode:2000Natur.408..796T. PMID 11130711. doi:10.1038/35048692 . 已忽略未知參數
|collaboration=
(幫助) - ^ Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. December 2002, 420 (6915): 520–62. Bibcode:2002Natur.420..520W. PMID 12466850. doi:10.1038/nature01262 . 已忽略未知參數
|collaboration=
(幫助) - ^ International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. October 2004, 431 (7011): 931–45. Bibcode:2004Natur.431..931H. PMID 15496913. doi:10.1038/nature03001 .
- ^ Bernstein BE, Liu CL, Humphrey EL, Perlstein EO, Schreiber SL. Global nucleosome occupancy in yeast. Genome Biology. August 2004, 5 (9): R62. PMC 522869 . PMID 15345046. doi:10.1186/gb-2004-5-9-r62.
- ^ Johnson SM, Tan FJ, McCullough HL, Riordan DP, Fire AZ. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Research. December 2006, 16 (12): 1505–16. PMC 1665634 . PMID 17038564. doi:10.1101/gr.5560806.
- ^ Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ. Genome-scale identification of nucleosome positions in S. cerevisiae (PDF). Science. July 2005, 309 (5734): 626–630. Bibcode:2005Sci...309..626Y. PMID 15961632. S2CID 43625066. doi:10.1126/science.1112178.
- ^ Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genetics. October 2007, 39 (10): 1235–44. PMID 17873876. S2CID 12816925. doi:10.1038/ng2117.
- ^ Ozsolak F, Song JS, Liu XS, Fisher DE. High-throughput mapping of the chromatin structure of human promoters. Nature Biotechnology. February 2007, 25 (2): 244–8. PMID 17220878. S2CID 365969. doi:10.1038/nbt1279.
- ^ Dennis JH, Fan HY, Reynolds SM, Yuan G, Meldrim JC, Richter DJ, et al. Independent and complementary methods for large-scale structural analysis of mammalian chromatin. Genome Research. June 2007, 17 (6): 928–39. PMC 1891351 . PMID 17568008. doi:10.1101/gr.5636607.
- ^ Zhao H, Zhang W, Zhang T, Lin Y, Hu Y, Fang C, Jiang J. Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biology. February 2020, 21 (1): 24. PMC 6996174 . PMID 32014062. doi:10.1186/s13059-020-1927-5.
- ^ Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Research. March 2011, 21 (3): 396–420. PMC 3110148 . PMID 21358755. doi:10.1038/cr.2011.32.
- ^ Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, et al. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nature Communications. May 2016, 7: 11485. Bibcode:2016NatCo...711485M. PMC 4859066 . PMID 27151365. doi:10.1038/ncomms11485.
- ^ 45.0 45.1 Hainer SJ, Fazzio TG. Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome. Cell Reports. October 2015, 13 (1): 61–69. PMC 4598306 . PMID 26411677. doi:10.1016/j.celrep.2015.08.071.
- ^ Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. Journal of Biomedicine & Biotechnology. January 2012, 2012: 251364. PMC 3398667 . PMID 22829749. doi:10.1155/2012/251364.
- ^ Henikoff S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nature Reviews. Genetics. January 2008, 9 (1): 15–26. PMID 18059368. S2CID 24413271. doi:10.1038/nrg2206.
- ^ Ercan S, Carrozza MJ, Workman JL. Global nucleosome distribution and the regulation of transcription in yeast. Genome Biology. September 2004, 5 (10): 243. PMC 545588 . PMID 15461807. doi:10.1186/gb-2004-5-10-243.
- ^ Gutin J, Sadeh R, Bodenheimer N, Joseph-Strauss D, Klein-Brill A, Alajem A, et al. Fine-Resolution Mapping of TF Binding and Chromatin Interactions. Cell Reports. March 2018, 22 (10): 2797–2807. PMC 5863041 . PMID 29514105. doi:10.1016/j.celrep.2018.02.052.
- ^ 50.0 50.1 50.2 50.3 Skene PJ, Henikoff S. A simple method for generating high-resolution maps of genome-wide protein binding. eLife. June 2015, 4: e09225. PMC 4480131 . PMID 26079792. doi:10.7554/eLife.09225.
- ^ 51.0 51.1 51.2 51.3 51.4 51.5 51.6 Lai B, Gao W, Cui K, Xie W, Tang Q, Jin W, et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature. October 2018, 562 (7726): 281–285. Bibcode:2018Natur.562..281L. PMC 8353605 . PMID 30258225. S2CID 52841785. doi:10.1038/s41586-018-0567-3.
- ^ 52.0 52.1 52.2 Tsompana M, Buck MJ. Chromatin accessibility: a window into the genome. Epigenetics & Chromatin. November 2014, 7 (1): 33. PMC 4253006 . PMID 25473421. doi:10.1186/1756-8935-7-33.
- ^ Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nature Reviews. Genetics. October 2009, 10 (10): 669–80. PMC 3191340 . PMID 19736561. doi:10.1038/nrg2641.
- ^ Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, et al. High-resolution mapping and characterization of open chromatin across the genome. Cell. January 2008, 132 (2): 311–22. PMC 2669738 . PMID 18243105. doi:10.1016/j.cell.2007.12.014.
- ^ 55.0 55.1 He HH, Meyer CA, Hu SS, Chen MW, Zang C, Liu Y, et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nature Methods. January 2014, 11 (1): 73–78. PMC 4018771 . PMID 24317252. doi:10.1038/nmeth.2762.
- ^ 56.0 56.1 56.2 Cooper J, Ding Y, Song J, Zhao K. Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing. Nature Protocols. November 2017, 12 (11): 2342–2354. PMID 29022941. S2CID 7993995. doi:10.1038/nprot.2017.099.
- ^ Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The accessible chromatin landscape of the human genome. Nature. September 2012, 489 (7414): 75–82. Bibcode:2012Natur.489...75T. PMC 2828505 . PMID 22955617. doi:10.1038/nature11232.
- ^ Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP, et al. A map of open chromatin in human pancreatic islets. Nature Genetics. March 2010, 42 (3): 255–9. PMC 2828505 . PMID 20118932. doi:10.1038/ng.530.
- ^ Simon JM, Giresi PG, Davis IJ, Lieb JD. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nature Protocols. January 2012, 7 (2): 256–67. PMC 3784247 . PMID 22262007. doi:10.1038/nprot.2011.444.
- ^ Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature Genetics. October 2016, 48 (10): 1193–203. PMC 5042844 . PMID 27526324. doi:10.1038/ng.3646.
- ^ Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. July 2015, 523 (7561): 486–90. Bibcode:2015Natur.523..486B. PMC 4685948 . PMID 26083756. doi:10.1038/nature14590.