赫爾曼·格拉斯曼
赫爾曼·格拉斯曼 Hermann Günther Grassmann | |
---|---|
出生 | 普魯士王國波美拉尼亞省斯德丁 (今日波蘭什切青) | 1809年4月15日
逝世 | 1877年9月26日 德意志帝國斯德丁 | (68歲)
母校 | 柏林大學 |
知名於 | |
獎項 | PhD: 圖賓根大學 (1876) |
科學生涯 | |
機構 | Stettin Gymnasium |
赫爾曼·京特·格拉斯曼(德語:Hermann Günther Graßmann,1809年4月15日—1877年9月26日),出生於什切青,是一個德國博學者,在他生活的時代以語言學家身份聞名,今天以數學家身份而著稱。他也是一位物理學家,新人道主義者,博學家和出版家。
生平
赫爾曼·格拉斯曼是賈斯圖斯·格拉斯曼的12個小孩中的第3個,賈斯圖斯是一個在什切青文理中學教授數學和物理的牧師,赫爾曼在那裡接受教育。
格拉斯曼一直是個不起眼的學生,直到他在普魯士大學的入學考試中獲得了高分。從1827年開始,他在柏林大學學習神學,同時修習了古典語言、哲學和文學方面的課程;他似乎未曾學習數學或者物理課程。
雖然缺乏大學數學課程訓練,數學卻是他在1830年在柏林完成學業並返回什切青時最感興趣的領域。經過一年準備,他參加了在文理中學教授數學的資格考試,但只取得了教低級別的資格。大約在這個時候,他做出了他的第一批重大數學發現,最終發展成1844年著作(以下簡稱A1,見參考資料)中的重要思想。
1834年,格拉斯曼開始在柏林的貿易學校(Gewerbeschule)教授數學。一年後,他返回什切青在一所新學校Otto中學教授數學、物理、德語、拉丁文和宗教。在接下來的四年中,格拉斯曼通過了能在中學所有級別教授數學、物理、化學和礦物學的考試。
1847年,他成為資深教師(Oberlehrer)。1852年,他得到了他亡父在什切青文理中學的職位,因而獲得了教授的頭銜。1847年,他向普魯士教育部申請大學教職,為此教育部向庫默爾徵詢了他對格拉斯曼的看法。庫默爾回信道格拉斯曼1846年的獲獎文章(參看下文)包含了「……以有缺陷的形式表達的值得讚賞的材料。」庫默爾的報告終結了格拉斯曼尋求大學教職的所有機會。這樣的場景重複出現,格拉斯曼年代的出名人士無法欣賞他的數學的真正價值。
在德國1848-49年的政治騷亂中,赫爾曼和羅伯特·格拉斯曼發行了一份報刊,鼓吹君主立憲制下的德國統一。(這在1871年得以實現)。在撰寫一系列關於憲法的文章之後,赫爾曼離開了報社,因為他發現他和該報的政治傾向愈發相左。
格拉斯曼有11個孩子,其中7個長大成人。其中一個兒子赫爾曼·恩斯特·格拉斯曼成為吉森大學的數學教授。
數學家生涯
格拉斯曼參加過的諸多考試中的一次要求他遞交關於潮汐的一篇文章。1840年,他寫了這樣一篇,採用了拉普拉斯的《天體力學》和拉格朗日的《解析力學》中的基本理論,但用他從1832年就開始琢磨的向量方法表述。這篇文章最初發表於1894-1911年的《合集》中,它包含了已知的最早的關於現在稱為線性代數的理論以及向量空間的概念。他在他的《A1》和《A2》中繼續發展了這些理論。
1844年,格拉斯曼發表了他的傑作,《線性外代數,數學的新分支》(Die Lineale Ausdehnungslehre, ein neuer Zweig der Mathematik),之後用A1代表,通常被稱為Ausdehnungslehre,譯為「擴展的理論」或者「擴展了幅度的理論」。因為A1給出了所有數學的一個新基礎,該著作首先討論了哲學本質的廣泛的定義。然後格拉斯曼證明一旦幾何被置入他所鼓吹的代數形式中,三就不再是空間維數的有特殊地位的數字;可能成為維數的數字是無限的。
Fearnley-Sander (1979)將格拉斯曼的線性代數的基礎表述為:
「線性空間的定義……在1920年左右變得常見,其時,赫爾曼·外爾和其他人發表了形式化的定義。事實上,這樣一個定義皮亞諾三十年前就給出過了,而他熟知格拉斯曼的數學作品。格拉斯曼沒有寫下形式化的定義 --- 那時還沒有合適的數學語言 --- 但無疑他已經有了同樣的概念。」
「從一些'單元'e1, e2, e3, ...開始,他實際上定義了它們所生成的自由線性空間;也就是說,他考慮了形式線性組合a1e1 + a2e2 + a3e3 + ...,其中aj是實數,並[以現在常用的方式]定義加法和數乘並為這些操作定義了線性空間的屬性。... 然後他發展了線性無關的理論,其方式和現代線性代數課本中的表述驚人地一致。他還定義了子空間,線性無關,生成空間,維數,子空間的並和交,以及元素到子空間的投影。」
「……很少人像格拉斯曼那樣獨立地創造了一個全新的課題。」
順著格拉斯曼父親的一個思路,A1還定義了楔積,也稱為「組合積」(德語為:德語:äußeres Produkt或者kombinatorisches Produkt),這樣的代數現在稱為外代數。(必須注意在格拉斯曼的年代,唯一公理化的理論是歐氏幾何,而且抽象代數的一般概念還沒有被定義)。1878年,威廉·金頓·克利福德將這個外代數的概念加入哈密爾頓的四元數中,他將格拉斯曼的epep = 0的規則換成epep = 1即可。細節請參看外代數。
A1是革命性的著述,因太超前而不被賞識。1847年,格拉斯曼以此著作申請教授職位,當局請教恩斯特·庫默爾的意見,庫默爾評價道裡面有不錯的想法,但缺乏清晰的解釋,不贊成給予大學教職。在接下來的十年間,格拉斯曼寫了各種應用他的擴張理論的著述,包括1845年的《電動力學新理論》和一些關於代數曲線和曲面的論文,他藉此希望有人因為這些應用而重視他的理論。
1846年,莫比烏斯邀請格拉斯曼參加一個競賽,解決最早由萊布尼茨給出的問題:推導不含坐標和度量屬性的幾何微積分(萊布尼茨稱其為analysis situs)。格拉斯曼的《附帶幾何分析和萊布尼茨特徵》(Die Geometrische Analyse geknüpft und die von Leibniz Characteristik)為得獎作品(也是唯一參賽的作品)。莫比烏斯作為評委之一批評了格拉斯曼引入抽象概念,卻不給讀者任何為何這些概念有用的直觀印象。
1853年,格拉斯曼發表了顏色如何混合的理論;該理論和它的三色定律,也就是格拉斯曼色彩定律。格拉斯曼在這個課題上的論著和亥姆霍茲的不一致。格拉斯曼也在晶體學、電磁學,和力學上有所著述。
格拉斯曼於1861年作出了算數的第一個公理化表示,其中自由使用了歸納原理。皮亞諾和他的追隨者從1890年開始自由地引用了該論文。
1862年,格拉斯曼發表了完全重寫的A1第二版,希望獲得他的擴張理論的遲到的讚譽,並包含了他的線性代數的定義表述。其成果,Die Ausdehnungslehre: Vollständig und in strenger Form bearbeitet,後面記為A2,並不比A1獲得更多的認同,雖然A2的表述方式預示了二十世紀課本的形式。
回應
赫爾曼·漢克爾是唯一在他在世時賞識他的數學家,他的1867年的論文(Theorie der complexen Zahlensysteme)有助于格拉斯曼的思想的傳播。該文
「...發展了格拉斯曼的代數和哈密爾頓的四元數。Hankel是第一個意識到格拉斯曼長期被忽略的論文的重要性的人……」 (摘自Hankel條目,科學傳記字典. 紐約: 1970-1990)
格拉斯曼的數學方法非常慢地得到採用,但它們直接影響了克萊因和埃利·嘉當。阿爾弗雷德·諾思·懷特黑德的第一本專論,泛代數(Universal Algebra) (1898年),包含了英語文獻中對擴張理論和外代數的第一次系統表述。擴張理論被用於微分形式的研究以及微分形式在分析和幾何方面的應用中。微分幾何也使用了外代數。關于格拉斯曼的工作在當代數學物理中的作用的簡介,請參看彭羅斯(2004:第11,12章)。
語言學家
因為不能以數學家身份得到承認,格拉斯曼成了一個歷史語言學家。他出版了關於德語語法的書籍和民歌集,並學習了梵語,將《梨俱吠陀》翻譯成了德語。[1]他的字典和他的印度草醫學譯本(還在複印)得到了哲學家的承認。他設計了一個印歐語的發音規則,被稱為格拉斯曼定律。這些哲學成就在他生前就得到了承認;他在1876年被選入美國東方社,並從蒂賓根大學獲得了榮譽學位。
參看
參考文獻
引用
- ^ [美] 約翰·德比希爾. 代数的历史:人类对未知量的不舍追踪(修订版). 人民郵電出版社. : 引文的起訖頁碼. ISBN 9787115225375 (簡體中文).
由於幻想破滅,格拉斯曼不再研究數學,而是轉向另一項愛好——梵文。他將梵文經典《梨俱吠陀》翻譯為德文,附有很長的注釋,總共近 3000 頁。因為這項成就,他獲得了德國圖賓根大學授予的榮譽博士頭銜。
來源
主要:
- 1844. Die lineale Ausdehnungslehre. Leipzig: Wiegand. English translation, 1995, by Lloyd Kannenberg, A new branch of mathematics. Chicago: Open Court. This is A1.
- 1861. Lehrbuch der Mathematik fur hohere Lehrenstalten, Band 1. Berlin: Enslin.
- 1862. Die Ausdehnungslehre, vollstandig und in strenger Form bearbeitet. Berlin: Enslin. English translation, 2000, by Lloyd Kannenberg, Extension Theory. American Mathematical Society. This is A2. Excerpt translated by D. Fearnley-Sander.
- 1894-1911. Gesammelte mathematische und physikalische Werke, in 3 vols. Friedrich Engel ed. Leipzig: B.G. Teubner. Reprinted 1972, New York: Johnson.
次要:
- Crowe, Michael, 1967. A History of Vector Analysis. Notre Dame University Press.
- Fearnley-Sander, Desmond, 1979, "Hermann Grassmann and the Creation of Linear Algebra," American Mathematical Monthly 86: 809-17.
- --------, 1982, "Hermann Grassmann and the Prehistory of Universal Algebra," Am. Math. Monthly 89: 161-66.
- -------, and Stokes, Timothy, 1996, "Area in Grassmann Geometry ". Automated Deduction in Geometry: 141-70
- Roger Penrose, 2004. The Road to Reality. Alfred A. Knopf.
- Schlege, Victor, 1878. Hermann Grassmann: Sein Leben und seine Werke. Leipzig: F.A. Brockhaus.
- Schubring, G., ed., 1996. Hermann Gunther Grassmann (1809-1877): visionary mathematician, scientist and neohumanist scholar. Kluwer.
- Hans-Joachim Petsche: Graßmann. Basel [usw.] 2006 (Vita Mathematica 13), ISBN 3-7643-7257-5
完整的網上傳記 (頁面存檔備份,存於網際網路檔案館),展示了現代人對于格拉斯曼的生平和著述的巨大興趣。參考了Schubring的所有章節。