藻類
藻類 多種光合真核生物的非正式術語 化石時期:
| |
---|---|
許多不同的藻類,生長環境從淺水到海床 | |
各種微觀的單細胞和群體淡水藻類 | |
科學分類 | |
Missing taxonomy template(修正): | 真核生物 |
傳統分類中包含的子類群 | |
一般會排除 | |
|
藻類(algae)是一個非正式術語,泛指所有非植物的光合自營真核生物,是一個由多個不同演化支(支序群)組成的復系群。所有藻類細胞都有含有葉綠素的色素體——葉綠體,源自被內共生的藍綠菌,但在分類上各自屬於獨立的演化支,其內共生事件也發生在不同時期。雖然植物也演化自淡水藻類的一支,藻類普遍都缺乏真正意義上根、莖、葉和其他可在高等植物上發現的組織構造(如維管束),但一些較為高級的藻類會擁有與植物葉子功能相似的假葉(phyllid)。
藻類並不構成獨立的一個界,而是分散於真核域中的數個界,是真核生物中最為基群的群體之一。屬於原生生物界的藻類有裸藻、甲藻(或稱渦鞭毛藻)、隱藻、金藻、矽藻、紅藻、綠藻和褐藻;而生殖構造複雜的輪藻則屬於植物界。絕大多數藻類都是水生,其中多數都是肉眼無法看見的浮游「微藻」(即所謂的「浮游植物」),宏觀可見的一般僅有紅藻、石蓴綱綠藻、輪藻和褐藻等固著性大型藻類。此類大型藻99%以上都棲息於海洋生態系統中,故統一俗稱「海藻」;而剩下的棲息在淡水生態系統的大型藻類則俗稱「水藻」。
藻類在自然界中擁有龐大生物質,人類許多傳統活動以及工業應用都會用到藻類。傳統的藻類養殖已進行了上千年,其中海帶和紫菜等大型藻是東亞飲食文化中的傳統海產。近來除了可食用藻類之外,藻類還有其他的農藝應用,例如作牲畜飼料、用作生物修復或污染控制、將太陽能轉換為藻類生質燃料或是其他工業上會用到的化學品,以及醫學或是科技上的應用。2020的回顧報告發現,藻類可以在碳截存上發揮重要作用,緩解氣候變化的同時也為全球的經濟體提供加值的商品[3]。
生態
藻類在水裡非常常見,在陸域環境也是。然而陸域藻類通常較不顯眼,且於潮濕、熱帶地區比乾燥地區更常見,因為藻類缺乏維管束和其他營陸地生活的適應構造。藻類在其他地點如雪地或以地衣的形式在裸露岩石表面與真菌共生。
種類繁複的藻類在水域生態系扮演重要角色。微觀下懸浮於水柱者﹝浮游植物﹞提供食物給大多數海洋食物鏈。當藻類密度非常高﹝水華﹞時,可能使水變色,與其他生物競爭或使其他生物中毒或窒息。海草大部分生長在淺海水中,然而有些已有生長於300公尺深的紀錄。[4]有些供人類食用或生產有用物質如洋菜、鹿角菜膠或肥料。
研究
研究海洋或淡水藻類的學科稱為藻類學。
分類
雖然傳統上將藍綠菌歸於藻類,稱為「藍綠藻門」(Cyanophyte),但近年研究通常將它排除,因為藍綠菌作為一種革蘭氏陰性菌其實是原核生物,和屬於真核生物的藻類差異甚大,諸如缺乏生物膜包裹的胞器、含有單一環狀染色體、細胞壁含有肽聚糖、核糖體大小和成分都與真核生物不同[5][6]。藍綠菌在特化摺疊的原生質膜(稱為葉綠囊膜)上行光合作用。因此,它們即使擁有類似的生態區位,彼此仍然差異很大所以現時被歸屬細菌界中。
愛爾蘭植物學家威廉•亨利•哈維(1811~1866) 首先根據色素將藻類分為四類,首次將生化準則用於植物分類,其四類為:紅藻、褐藻、綠藻和矽藻。[7]
依現在的定義,藻類是真核生物,在稱為葉綠體的膜狀胞器內行光合作用。葉綠體內含環狀DNA,結構和藍綠藻相似,可能代表退化的藍綠藻內共生胞器。各演化系(lineage)藻類葉綠體的確切特性均不相同,反映出不同的內共生事件。下表列出三個主要群組,它們的演化系關係表示於左側。需注意許多群組均包含不再行光合作用的成員。有些仍保有色素體但非葉綠體,有些則已經完全喪失。
種系發生:[8]
藍藻 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||
主要群組 | 成員 | 內共生體 | 說明 |
---|---|---|---|
廣義植物/ 原始色素體生物 |
藍綠藻 | 含有初級葉綠體,i.e,葉綠體由雙層膜包圍,可能源自單一內共生事件。紅藻的葉綠體含葉綠素a和d(通常),和藻膽素,而綠藻的含葉綠素a和b。高等植物的色素近似綠藻,可能由綠藻演化而來。所以綠藻門是植物界的親近分類,有時會歸類為綠植界(Virdiplantae)。 | |
古蟲界與有孔蟲界 | 綠藻 | 擁有內含葉綠素a和b的綠色葉綠體[5]。葉綠體被3或4層膜包圍,可能分別源自吞入的綠藻。
綠蛛網藻,屬於絲足蟲門。包含小型的類核體,其為藻類細胞核的殘餘。 裸藻綱,屬於眼蟲門。主要生活於淡水,葉綠體有3層膜。有人認為其內共生綠藻是經由myzocytosis而非吞噬作用(phagocytosis) | |
色藻界和囊泡蟲類 | 紅藻 | 擁有內含葉綠素a和c、藻膽素的葉綠體。後者葉綠素型態無法從原核生物或初級葉綠體得知,但是與紅藻基因相似性支持其關係存在。
屬於色藻界的前三類,葉綠體有4層膜,隱藻殘留有類核體,他們很可能共同擁有含有色素的祖先。然而其他證據質疑這種說法,不等鞭毛類、定鞭藻和隱藻之間的關係是否比和其他類的關係更接近[9][10]。 典型甲藻類的葉綠體有3層膜,但是其葉綠體非常多樣,且顯示曾有數次內共生事件[11]。頂復門,一組關係十分接近的寄生生物,也有稱為頂復體 (Apicoplast)的色素體。頂復體無法行光合作用,但是顯示出和甲藻類葉綠體有共同起源[11]。 |
參見
參考文獻
- ^ Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology. 2000, 26 (3): 386–404. ISSN 0094-8373. S2CID 36648568. doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2. (原始內容存檔於7 March 2007).
- ^ T.M. Gibson. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology. 2018, 46 (2): 135–138 [2024-03-13]. Bibcode:2018Geo....46..135G. doi:10.1130/G39829.1. (原始內容存檔於2022-11-14).
- ^ Paul, Vishal; Chandra Shekharaiah, P. S.; Kushwaha, Shivbachan; Sapre, Ajit; Dasgupta, Santanu; Sanyal, Debanjan. Role of Algae in CO2 Sequestration Addressing Climate Change: A Review. Deb, Dipankar; Dixit, Ambesh; Chandra, Laltu (編). Renewable Energy and Climate Change. Smart Innovation, Systems and Technologies 161. Singapore: Springer. 2020: 257–265 [2024-03-13]. ISBN 978-981-329-578-0. S2CID 202902934. doi:10.1007/978-981-32-9578-0_23. (原始內容存檔於2023-04-06) (英語).
- ^ Round, F.E. 1981. The Ecology of Algae. Cambridge University Press, London. ISBN 978-0-521-22583-0
- ^ 5.0 5.1 Biology 8th ed. Losos, Jonathan B., Mason, Kenneth A., Singer, Susan R., McGraw-Hill. 2007.
- ^ FIU BOT4404 Lecture Notes. [2008-10-14]. (原始內容存檔於2021-04-03).
- ^ Dixon, P S. Biology of the Rhodophyta. Edinburgh: Oliver & Boyd. 1973: 232. ISBN 978-0-05-002485-0.
- ^ Bhattacharya, D.; Medlin, L., Algal Phylogeny and the Origin of Land Plants (PDF), Plant Physiology, 1998, 116 (1): 9–15 [2009-02-26], (原始內容存檔 (PDF)於2009-02-07)
- ^ Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI; et al. Phylogenomics Reshuffles the Eukaryotic Supergroups. PLoS ONE. 2007, 2 (8: e790): e790. doi:10.1371/journal.pone.0000790.
- ^ Laura Wegener Parfrey, Erika Barbero, Elyse Lasser, Micah Dunthorn, Debashish Bhattacharya, David J Patterson, and Laura A Katz. Evaluating Support for the Current Classification of Eukaryotic Diversity. PLoS Genet. December 2006, 2 (12): e220 [2009-02-26]. PMID 17194223. doi:10.1371/journal.pgen.0020220. (原始內容存檔於2019-09-12).
- ^ 11.0 11.1 Patrick J. Keeling. Diversity and evolutionary history of plastids and their hosts. American Journal of Botany. 2004, 91: 1481–1493 [2009-02-26]. doi:10.3732/ajb.91.10.1481. (原始內容存檔於2008-02-27).
延伸閱讀
[在維基數據編輯]
外部鏈接
- 陳衍昌藻類網址 (頁面存檔備份,存於網際網路檔案館) - 國立台灣海洋大學陳衍昌副教授藻類網址
- Algaebase - Algaebase
- 臺灣海藻資訊網 - 國立臺灣博物館
- 國立彰化師範大學生物系 - 王瑋龍藻類研究室 - 藻類查詢