羅伊恆等式(Roy's identity)是個體經濟學中的一項重要結果,在生產者理論和消費者理論中都有應用。
設消費者的間接效用函數為 v ( p , w ) {\displaystyle v(\mathbf {p} ,w)} ,則商品 i {\displaystyle i} 的馬歇爾需求函數即為
其中 p {\displaystyle \mathbf {p} } 為各商品的價格向量, w {\displaystyle w} 為所得。[1]
根據定義,間接效用函數滿足約束條件 p ⋅ x = w {\displaystyle \mathbf {p} \cdot \mathbf {x} =w} 下的最大值 v ( p , w ) = max x u ( x ) {\displaystyle v(\mathbf {p} ,w)=\max _{\mathbf {x} }u(\mathbf {x} )} 。因此由帶約束的包絡定理立即得到
其中 L = u ( x ) − λ ( p ⋅ x − w ) {\displaystyle {\mathcal {L}}=u(\mathbf {x} )-\lambda (\mathbf {p} \cdot \mathbf {x} -w)} 為拉格朗日乘數,由其表達式可得 λ = ∂ L ∂ w = ∂ v ∂ w {\displaystyle \lambda ={\frac {\partial {\mathcal {L}}}{\partial w}}={\frac {\partial v}{\partial w}}} ,代入上式即得證。[2]