跳至內容

緩步動物門

維基百科,自由的百科全書

緩步動物門
化石時期:土侖階至現代
水熊蟲
科學分類 編輯
界: 動物界 Animalia
亞界: 真後生動物亞界 Eumetazoa
演化支 副同源異形基因動物 ParaHoxozoa
演化支 兩側對稱動物 Bilateria
演化支 腎管動物 Nephrozoa
演化支 原口動物 Protostomia
總門: 蛻皮動物總門 Ecdysozoa
演化支 泛節肢動物 Panarthropoda
演化支 序足動物 Tactopoda
門: 緩步動物門 Tardigrata
Spallanzani, 1777

緩步動物(英語:tardigrades[1][2])是俗稱水熊蟲(water bear)或苔蘚豬(moss piglet)的一類小型動物,組成被稱為緩步動物門學名Tardigrata)的分類單位。水熊蟲主要生活在淡水的沉渣、潮濕土壤以及苔蘚植物的水膜中,少數種類生活在海水的潮間帶。有記錄的大約有1000餘種,其中許多種是世界性分布的。在喜馬拉雅山脈(海拔6000米以上)或深海(海拔-4000米以下)都可以找到牠們的蹤影。直到今日,人們對緩步動物在動物分類中的位置、形態學、生活方式、組織學以及其隱生性的研究興趣有增無減。

緩步動物也是第一種已知可以在太空中生存的動物。2019年2月21日,以色列的月球著陸器創世紀號嘗試登陸在月球澄海北端失敗,其中拱門任務基金會內含數以千計水熊蟲的貨物散播到了月球表面。[3][4]

特徵

緩步動物是多細胞生物。它們非常細小,大部分不超過1毫米,最小的Echiniscus parvulus初生的時候只有50微米。而最大的Macrobiotus bufelandi則僅達1.4毫米。通體透明、無色、黃色、棕色、深紅色或綠色。它們的顏色主要是它們的食物賦予的。它們食入含類胡蘿蔔素的食物,而這些攝入的類胡蘿蔔素會在各器官沉積。

它們由頭部和四個體節所組成,身體被幾丁質構成的角質層覆蓋。四對腳,末端有爪子,吸盤或腳趾。由長長的細胞組成的肌肉因應體節而分布。口前有兩向前突出,一個用於刺進食物,另一個則是吸收工具。前腸有很多成對腺體,薄薄的食道連接中腸。在兩個目的水熊蟲中腸和末腸之間有馬氏管,專司體內的滲透壓平衡。

神經系統的構成:咽上下神經節,其中咽下神經節和腹部四個神經節鏈式相連。體腔中的細胞負責儲存。水熊蟲沒有循環系統呼吸系統

緩步動物通常是雌雄異體。它們的性腺是次體腔的殘留物,使不成對的囊狀器官,或者是在肛門前向外開口,或者是向終腸開口。卵子並不需要事先受精就可以被排出體外。  

緩步動物分類

緩步動物門可分為:

  • 異緩步綱:習性:棲息地在海中。外型特徵:全身布滿刺毛與突起。
  • 中緩步綱英語Mesotardigrada:只有Thermozodium esakii 英語Mesotardigrada一種被紀載,是在日本長崎縣雲仙地區的溫泉發現的,沒有任何標本或物種被保存下來,因此真實性存疑。外型在異緩步綱和真緩步綱之間。
  • 真緩步綱:外型特徵:大部分相較於異緩步綱全身光滑但有些種類也有突起與刺毛,這些種類和異緩步綱不同的是真緩步綱口器旁沒有長毛,長毛的用途有感知周遭氣流的功用。[5]

惡劣環境下隱生與生存

Hypsibius dujardini - 水熊蟲的一種

緩步動物門具有全部四種隱生(Cryptobiosis)性,即低濕隱生(Anhydrobiosis)、低溫隱生(Cryobiosis)、變滲隱生(Osmobiosis)及缺氧隱生(Anoxybiosis),能夠在惡劣環境下停止所有新陳代謝。緩步動物也因此被認為是生命力最強的動物。在隱生的情況下,一般可以在高溫(151 °C)、接近絕對零度(-272°C)、高輻射(達到人類致死量 1000 倍的 X 射線)、真空或6000 大氣壓下隱生的環境下生存數分鐘至數日不等。[6]

低濕隱生

這是最常見的隱生形式,當陸生的緩步動物生活環境開始缺水時即會發生。水熊蟲會產生蛋白質去替代缺失的水。當它們再次接觸到水的時候,水會重新充滿細胞溶解蛋白質,使它們能在很短時間之內重新活動[7][8]。包括陸生緩步動物在內,只有它們身處水中才能存活。如果周邊液體被稀釋甚至低於體液濃度時,緩步動物就會蜷縮成桶狀。背側的甲片會層疊在一起,甲片之間的彈性角質層會收縮。進入所謂的「小桶狀態」(Cask Phase)。

進入「小桶狀態」的首要原因是缺氧。實驗中停止通風,緩步動物會收縮。但在水中肌肉的收縮狀態不能持久。所以「小桶」遇水即會重新舒展,但個體會立即進入窒息狀態(Asphyxie)。

緩步動物能渡過缺水期有前提,就是該過程是緩慢進行的而且空氣濕度不能太低。乾燥過程太快,緩步動物就沒有時間去收縮。作違背該前提的實驗,可以觀察到緩步動物緊壓在地表,很難復甦。

缺氧隱生

缺氧隱生發生於緩步動物周遭液體含氧量低於一個閾值(臨界值)。開始的時候緩步動物先收縮,但後來就會伸展到最大狀態,同時也是窒息狀態,一些種類能在缺氧狀態下存活五天。缺氧隱生時緩步動物的新陳代謝狀態目前人類並不知道。

低溫隱生

低溫就會引起低溫隱生。緩步動物能先被冷凍再經解凍而復甦,而且不會對身體造成損壞。1975年Crowe將活動狀態的Macrobiotus areolatus放到2毫升-20 °C的水中。所有實驗動物立刻進入小桶狀態。在4 °C的水中解凍只需要一分鐘。80%的動物成功甦醒。

變滲隱生

變滲隱生還沒有很好的被觀察到。變滲隱生是因為環境的滲透壓升高引起的。Macrobiotus bufelandi在0.4%的鹽溶液中仍然能活動。在15%的鹽溶液中它會在9秒之內進入小桶狀態。Echiniscoides sigismundi在淡水中會窒息,但若在三天內將它重新放到海水中,它就會甦醒過來。

在太空真空環境生存

  • 外太空:緩步動物是第一種已知可以在太空中生存的動物。在2007年,緩步動物在FOTON-M3任務中,在低地球軌道的太空中經歷了10天,暴露在真空的太空中,而它們活著回到了地球[9][10]。在回到地球再水合之後,超過68%的保護主體在高能紫外線輻射下倖存了下來,並且有許多自行產生了胚胎,還有少數在充分暴露在太陽輻射後存活了下來[11][12]。在2011年5月,義大利的科學家將緩步動物與其它極端微生物搭乘STS-134(最後一次的太空梭飛行,美國太空梭 奮進號)進入太空[13][14][15]。他們的結論是微重力和宇宙輻射「對緩步動物的飛行影響不大,確認緩步動物能在太空研究中扮演有用的角色」[16]

胞囊

胞囊中渡過困難時期並不算是隱生的一種。

在苔蘚和乾草間生活的,特別是淡水生的種類能夠通過這種胞囊的形式渡過困難時期。在這種狀態下緩步動物會縮小成只有原來20%到50%的體積,降低新陳代謝甚至分解部分器官。該過程伴隨有三次連續的蛻皮,結束的時候,動物就會被多層角質層外殼所包繞。在這種狀態下緩步動物能存活一年。當環境改變回來,該個體能在6到48小時內脫殼而出。

胞囊的形成只會在水中發生。它遠不如小桶狀態那樣具抵抗能力,而且其水分含量也決定了其不具有抗高溫能力。

生命史

緩步動物的生長階段有:幼蟲成蟲

緩步動物的卵非常堅硬,形狀因物種不同而有所不同,因此科學家用卵形狀的不同區分不同的物種。緩步動物的卵最多能生產到18顆卵,平均介於3到5顆。卵的孵化時間依照環境而有所不同。若周遭是良好環境,則卵只需2周便能孵化;若周遭環境惡劣,則需2個月以上的時間孵化。

幼蟲

當緩步動物的卵孵化,生產出的緩步動物便是初齡(一齡)幼蟲,由於緩步動物的皮膚角質,所以不會生長,因此緩步動物只能靠蛻皮生長。

成蟲

當緩步動物幼蟲蛻皮3次時,便可以算是成蟲。 緩步動物的雌性成蟲每次蛻皮也會同時產卵,若產完卵無法爬出皮蛻,即使進入了缺氧隱生,還是會窒息而死。

研究史

「小水熊蟲」在1773年首次被一位名叫哥策神父描述,但並不完整。1774年和1776年義大利人考廷斯巴蘭扎尼發現,在缺水的環境下,緩步動物能夠不脫去保護外殼而「復活」。斯巴蘭扎尼並且指出,緩步動物要度過缺水時期就必須慢慢的失水,而緩步動物Tardigrada這個名字也是斯巴蘭扎尼首次給出的。

1785年穆勒(O.F.Müller)對這種動物作了深入的觀察,他嘗試將緩步動物歸入動物演化樹中並且把它歸入壁虱屬,米勒所使用的學名Acarus ursellus林奈寫到了他的《自然分類》中。1834年舒爾策發現了有名的Macrobiotus bufelandi,該名字來源於柏林醫生Hufeland,他著了一本有關長壽術(德語:Makrobiotik)的書叫《延年益壽之藝術》;相對於斯巴蘭扎尼的「復活」,舒爾策認為緩步動物在缺水後再次接觸到水時「甦醒」過來了,但他的看法並不是得到很多認同。他同時代的愛亨伯格則認為,緩步動物缺水時能分泌一種物質,在裡面緩步動物不但能度過困難時期,而且能繁衍後代,數年後「醒過來」的只是它的後代。更有人認為那是一種自然發生(generatio spontanea)。

對緩步動物形態,系統分類和生理研究有著最深遠影響的貢獻當屬法國人Doyères所寫的書《Mémoire sur les Tardigrades》(1840-1842年)。他強調了緩步動物在慢慢失水的環境中「復活」的能力。這和當時另一種觀點相衝突,就是認為,沒有任何預防措施可以阻止完全脫水的動物的死亡。1859年巴黎生物協會最終通過一份超過100頁的鑑定形成定論,就是Doyères的意見是對的。新的問題是,在這種脫水環境中,緩步動物的新陳代謝究竟只是變慢了還是停止了。20世紀初,耶穌會神父拉門(G.Rahm)通過緩步動物還能度過低溫(接近絕對零度)環境的現象認為,新陳代謝是「停止」了。1922年鮑曼通過對脫水隱生的形態和生理方面的研究,再次捍衛了這一觀點。

1851年,Dujardin認為緩步動物是一種原本生活在海洋裡的生物,這是緩步動物的分類的第一步。1907-1909年Murray在不列顛-南極探險中收集到多種緩步動物的樣本。使得緩步動物的種類在很短的時間內上升到了25種。1928年艾倫·圖靈為緩步動物建立了一個新

但緩步動物在動物界中的位置在Doyères的著作中並沒有被提及。1851年Dujardin根據它們具有和線蟲動物相似的咽,而認為緩步動物是線蟲動物的近親,但大部分的專家卻認為應是節肢動物。1929年根據當時組織學的證據人們將它劃為節肢動物下的。到了1953年,人們終於可以有技術基礎去測量緩步動物正常和隱生狀態下的氧氣消耗量。1968年科學家通過電子顯微鏡觀察到緩步動物的儲存細胞。1972年拉馬佐蒂的專著第二版出版,列舉了413種緩步動物。

1974年藉拉馬佐蒂75大壽之際在義大利城市帕蘭扎(Pallanza)舉行了第一屆國際緩步動物論壇。

參考文獻

  1. ^ 存档副本. [2024-03-16]. (原始內容存檔於2024-02-23). 
  2. ^ Miller, William. Tardigrades. American Scientist. 2017-02-06 [2018-04-13]. (原始內容存檔於2018-04-14). 
  3. ^ Solidot | 水熊虫通过坠毁的以色列飞船散播到月球表面. www.solidot.org. [2019-08-31]. (原始內容存檔於2020-10-06). 
  4. ^ Solidot | 以色列月球登陆器登陆失败. www.solidot.org. [2019-08-31]. (原始內容存檔於2020-10-06). 
  5. ^ 書名 熊蟲: 地表最強 出版日期 2017 熊蟲被稱作「地表最強的生物」,不管怎麼玩,牠都不會被玩死。 把熊蟲置於乾燥的環境,牠會變成酒桶狀,而且可以活到一百年以上。 不只這樣,這個「酒桶」在非常極端的環境下也不會有事,例如攝氏零下二七〇度的超低溫,或是攝氏一五〇度的高溫,甚至用輻射線照牠、用微波爐加熱,熊蟲都能活得好好的。
  6. ^ 整個世界都是我的裝備庫!來看看地表最強的水熊秘訣. PanSci 泛科學. 2015-12-02 [2017-03-09]. (原始內容存檔於2017-03-25) (中文(臺灣)). 
  7. ^ Gabbott, Sarah. Secrets of toughest creatures revealed. BBC News. 2017-07-28 [2020-05-10]. (原始內容存檔於2020-11-11) (英國英語). 
  8. ^ Solidot | 科学家揭示水熊虫的秘密. www.solidot.org. [2020-05-10]. (原始內容存檔於2020-10-06). 
  9. ^ Creature Survives Naked in Space. Space.com. 8 September 2008 [2011-12-22]. (原始內容存檔於2018-10-11). 
  10. ^ Mustain, Andrea. Weird wildlife: The real land animals of Antarctica. MSNBC. 22 December 2011 [2011-12-22]. (原始內容存檔於2012-01-07). 
  11. ^ Jönsson, K. Ingemar; Rabbow, Elke; Schill, Ralph O.; Harms-Ringdahl, Mats; Rettberg, Petra. Tardigrades survive exposure to space in low Earth orbit. Current Biology. 2008-09-09, 18 (17): R729–R731. PMID 18786368. doi:10.1016/j.cub.2008.06.048. 
  12. ^ Courtland, Rachel. 'Water bears' are first animal to survive space vacuum. New Scientist. 2008-09-08 [2011-05-22]. (原始內容存檔於2015-06-27). 
  13. ^ NASA Staff. BIOKon In Space (BIOKIS). NASA. 2011-05-17 [2011-05-24]. (原始內容存檔於2019-03-26). 
  14. ^ Brennard, Emma. Tardigrades: Water bears in space. BBC. 2011-05-17 [2011-05-24]. (原始內容存檔於2017-05-02). 
  15. ^ Tardigrades: Water bears in space. BBC Nature. 2011-05-17 [2013-08-01]. (原始內容存檔於2017-05-02). 
  16. ^ Rebecchi, L., et. al. Two Tardigrade Species On Board the STS-134 Space Flight" in "International Symposium on Tardigrada, 23-26 July 2012 (PDF): 89. [2013-01-14]. (原始內容存檔 (PDF)於2018-09-07). 
  • Greven, H. (2005): Die Bärtierchen, Westarp Wissenschaften, ISSN 0138-1423

外部連結