跳至內容

布豐投針問題

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

布豐投針問題(法語:Aiguille de Buffon,又譯「蒲豐投針問題」),是法國學者布豐於18世紀提出的一個數學問題:[1]

設我們有一個以平行且等距木紋舖成的地板(如右圖),現在隨意拋一支長度比木紋之間距離小的,求針和其中一條木紋相交的機率。

使用積分幾何能找到此題的解。用該方法可設計一個求π蒙地卡羅方法,不過這並非布豐的本意。[2]

解法

設針的長度是,平行線之間的距離為為針的中心和最近的平行線的距離,為針和線之間的銳角

均勻分布,其機率密度函數

且均勻分布,其機率密度函數為

兩個隨機變數互相獨立,因此兩者結合的機率密度函數只是兩者的

,針和線相交,然後對積分得出所求機率。

要求上式的積分需要分為兩種情況:「短針」以及「長針」;以下考慮「短針」情況,計算上式積分得針與線相交的機率:

作簡單變換可得,

當拋支針,其中有支針與線相交,利用多次重複試驗所觀察事件發生的頻率越來越接近機率的理論值

近似可得

拉扎里尼的估計

1901年,義大利數學家馬里奧·拉扎里尼(Mario Lazzarini)嘗試進行此實驗。他拋了3408次針,得到π的近似值為355/113。

拉扎里尼選取了一支長度是紋的距離的5/6的針。在這個情況,針和紋相交的機會是5/(3π)。如果想拋n次針而得到x次相交,π約等於。分母、分子少於五位數字,沒有比355/113更好的π的近似值了。因此,可以列式,得

為求x的值接近這個數,可以重覆拋213次針,若有113次是成功的,便可終止實驗,宣布這個方法求π值準確度不低;否則,就再拋213次針,希望共有226次成功……這次反覆進行實驗。拉扎里尼做了次。

參見

參考文獻

  1. ^ Histoire de l'Acad. Roy. des. Sciences (1733), 43–45; Histoire naturelle, générale et particulière Supplément 4 (1777), p. 46.
  2. ^ Behrends, Ehrhard. Buffon: Hat er Stöckchen geworfen oder hat er nicht? (PDF). [14 March 2015]. (原始內容存檔 (PDF)於2014-08-02). 

外部連結