跳至內容

圓均勻分布

維基百科,自由的百科全書

概率論方向統計學中,圓均勻分布(英語:circular uniform distribution)是單位圓上均勻的概率分布。

描述

圓均勻分布的概率密度函數是:

用圓變量來表示,圓均勻分布的n(n>0)階圓矩都為0。

平均值的分布

從一個圓均勻分布取得的個測量值的樣本平均為:

其中[1]

平均長度

平均角度

圓均勻分布的樣本平均的取值集中在0的附近,隨著N增大而更加集中。均勻分布的樣本平均的分布為[2]

其中的使得為常數的子空間。角度分布是均勻的

的分布為:

圓均勻分布的樣本平均的分布(N=3),蒙特卡洛模擬,1萬點。

其中是0階貝索函數。上面的積分沒有已知的解析解,也很難作近似估計,因為被積函數有大量震盪。

對於某些特殊情況,上面的積分式可以求出來,例如N=2:

當N很大時,平均值的分布可以由方向統計學的中心極限定理確定。由於角度是均勻分布的,每個角的正弦和餘弦服從分布:

其中。由此可得平均值為0,均值為1/2。根據中心極限定理,在大N極限下,作為大量獨立同分布的隨機變量的和,近似於均值為0方差為1/2N的常態分布。

均勻分布的微分就是

其中是長度為的區間。這是圓分布的熵的最大值。

參考文獻

  1. ^ "Transmit beamforming for radar applications using circularly tapered random arrays - IEEE Conference Publication". ieeexplore.ieee.org. Retrieved 22 April 2018.
  2. ^ Jammalamadaka, S. Rao; Sengupta, A. (2001). Topics in Circular Statistics. World Scientific Publishing Company. ISBN 978-981-02-3778-3.