母數統計
沒有或很少條目連入本條目。 (2019年10月11日) |
母數統計(Parametric statistics)是統計學的一個分支,它假設樣本數據來自母體,而母體可以透過具有固定母數集的機率分布進行充分建模。 [1]相反,無母數模型的確切區別在於其母數集(或機器學習中的特徵集 )不是固定的,如果收集到新的相關資訊,則該母數集可能會增加甚至減少。 [2]
大多數著名的統計方法都是母數化的。 [3]關於無母數(和半母數)模型, 戴維·考克斯爵士說:「這些模型通常較少涉及結構和分布形式的假設,但通常都包含有關獨立性的強有力假設」。 [4]
示例
常態分布族都具有相同的一般形態,並可以通過均值和標準差進行母數化 。這意味著,如果均值和標準差已知,並且分布是常態的,則任何將來觀察到的給定範圍內的機率都是已知的。
假設有一個存在99個測試分數的樣本,平均值為100,標準差為1。如果假設所有99個測試分數都是從常態分布中隨機觀察到的,那麼我們預測第100個測試分數有1%的機率將高於102.33(即平均值加2.33標準偏差)。給定99個來自相同常態分布的獨立觀測值,可使用母數統計方法計算上述標準偏差值。
對同一事物的無母數估計是前99個分數中的最大值。不需要假設考試分數的分布情況就可以推斷出,在我們進行考試之前,最高分數會出現在前100個分數中。因此,第100個分數有1%的可能性高於之前的99個分數。
歷史
RA Fisher在1925年的《 Statistical Methods for Research Workers 》中提到了母數統計,這為現代統計奠定了基礎。