關於與「
卡諾定理 (垂線)」標題相近或相同的條目頁,請見「
卡諾定理」。
卡諾定理以拉扎爾·卡諾命名,為垂直於三角形各邊的直線是否交於一點提供了一個充分必要條件。該定理也可被視為是畢氏定理的一般化。
定理
對於一個三角形,其三邊為。考慮三條垂直於各邊且交於一點的直線,若是這三條垂線在上的垂足,則下列關係式成立:
該命題的逆命題同樣成立:若在邊上的位置滿足關係式,則以這三點為垂足做出的三條垂線會交於一點。因此,該關係式為垂線是否交於一點提供了一個充分必要條件。
特例
若三角形的角為直角,則可以將三條垂線的交點置於上。此時由於、 且,可得、、、、與,代入卡諾定理的關係式後,即可推得畢氏定理。
若三條垂線皆為中垂線,則、且,無論三邊長度為何,上述關係式必會成立,故可推得三角形的三條中垂線必交於一點。
參考資料