非交换拓扑
数学中,非交换拓扑是用于拓扑学与C*-代数概念之间关系的术语。非交换拓扑起源于盖尔范德–奈马克定理,指出局部紧豪斯多夫空间的范畴同交换C*-代数范畴之间的对偶性。非交换拓扑与解析非交换几何有关。
例子
非交换拓扑背后是前提是,非交换C*-代数可以像非交换空间上的复值连续函数代数一样处理,而非交换空间在经典上是不存在的。有几个拓扑性质可表为C*-代数的性质,而无需提及交换性或底空间,因此可以立即推广。其中包括
交换C*-代数的各个元素同连续函数相对应。因此,某些函数类可对应C*-代数的性质,例如交换C*-代数的自伴元素对应实值连续函数。另外,投影(即自伴幂等元)对应闭开集的指示函数。 范畴构造引出一些例子。如,空间的余积是无交并 ,于是对应于代数的直和,其是C*-代数的积。同样,积拓扑对应C*-代数的余积,即代数的张量积。在更特殊的情形下,拓扑的紧化对应代数的单位化,于是单点紧化对应C*-代数的最小单位化,斯通-切赫紧化对应乘数代数,冠集对应冠代数。
在某些性质的例子中,可能存在多种推广,但并不清楚哪种更可取。例如,概率测度可对应状态或迹态。由于交换情形下,所有状态都是空迹态(vacuously tracial state),因此迹条件是否是有用推广的必要条件,并不清楚。
K理论
这一思想的一个主要例子是拓扑K-理论以算子K-理论的形式推广到非交换C*-代数。
其中普通K理论的环结构是特例。积赋予KK以范畴的结构,与代数簇的对应有关。[1]
参考文献
- ^ Connes, Alain; Consani, Caterina; Marcolli, Matilde, Noncommutative geometry and motives: the thermodynamics of endomotives, Advances in Mathematics, 2007, 214 (2): 761–831, MR 2349719, arXiv:math.QA/0512138 , doi:10.1016/j.aim.2007.03.006
这是一篇关于拓扑学的小作品。您可以通过编辑或修订扩充其内容。 |