零维空间
此条目包含过多行话或专业术语,可能需要简化或提出进一步解释。 (2019年10月21日) |
数学上,零维空间是按以下的不等价定义之一,维数为零的拓扑空间:
- 按覆盖维数的概念,一个拓扑空间是零维空间,若空间的任何开覆盖,都有一个加细,使得空间内每一点,都在这个加细的恰好一个开集内。
- 按小归纳维数的概念,一个拓扑空间是零维空间,若空间有一个由闭开集组成的基。
这两个概念对可分可度量化空间为等价。(乌雷松定理指这类空间的这两个维数相等。)
覆盖维数零的空间的性质
一个零维豪斯多夫空间必定是完全不连通空间,但逆命题不成立。不过一个局部紧豪斯多夫空间是零维空间,当且仅当这空间是完全不连通的。
零维豪斯多夫空间正正是拓扑幂集的子空间,其中2={0,1}赋予了离散拓扑。若是可数无限的,是康托尔空间。
参考
- Arhangel'skii, Alexander; Tkachenko, Mikhail, Topological groups and related structures, Atlantis studies in mathematics Vol. 1, Atlantis Press, 2008, ISBN 90-78677-06-6
- Engelking, Ryszard. General Topology. PWN, Warsaw. 1977.
- Willard, Stephen. General Topology. Dover Publications. 2004. ISBN 0-486-43479-6.
参见
这是一篇关于数学的小作品。您可以通过编辑或修订扩充其内容。 |