跳转到内容

莫雷拉定理

本页使用了标题或全文手工转换
维基百科,自由的百科全书

莫雷拉定理是一个用来判断函数是否全纯的定理。

如果f是一个连续的复值函数,定义在复平面上的开集D内,且对于所有D内的闭曲线C,都满足

fD内是全纯的。

莫雷拉定理的假设等于是说fD内具有原函数。

该定理的逆命题不一定成立。全纯函数在定义域内并不一定有原函数,除非加上更多条件。例如,柯西积分定理说明全纯函数沿着一条闭曲线路径积分为零,只要函数的定义域是单连通的。

证明

莫雷拉定理有一个相对简单的证明。不失一般性,我们可以假设D连通的。固定D内的一个点a,并定义D内的一个复值函数F

这个积分可以是沿着D内从ab的任何一条路径。函数F是定义良好的,因为根据假设,f沿着从ab的任何两条曲线的积分一定是相等的。根据微积分基本定理,可知F导数f

特别地,函数F是全纯的。则f也一定是全纯的,因为它是全纯函数的导数。

应用

一致极限

假设f1f2, ...是一个全纯函数的序列,在开圆盘内一致收敛于连续函数f。根据柯西积分定理,可知对每个n,顺着任意圆盘内的闭曲线C

而一致收敛则意指,对每个闭曲线C

,因此根据莫雷拉定理,f 一定是全纯函数。这个事实可以用来证明对每一个开集Ω ⊆ C,由所有有界解析函数u : Ω → C 所组成的集合A(Ω) 会是一个在最小上界范数下的复巴拿赫空间。

无穷级数和积分

莫雷拉定理可以用于证明由级数或积分所定义的函数的解析性,例如黎曼ζ函数

伽玛函数

参考文献

  • Ahlfors, Lars, Complex Analysis, McGraw-Hill, January 1, 1979, ISBN 978-0070006577 
  • Conway, John B., Functions of One Complex Variable I, Graduate Texts in Mathematics, Springer, April 1, 2001, ISBN 978-3540903284 
  • G. Morera, "Un teorema fondamentale nella teoria delle funzioni di una variabile complessa", Rend. del R. Instituto Lombardo di Scienze e Lettere (2) 19 (1886) 304–307
  • Rudin, Walter, Real and Complex Analysis, McGraw-Hill, May 1, 1986, ISBN 978-0070542341 

外部链接