跳转到内容

乌拉姆数列

维基百科,自由的百科全书

乌拉姆数列是由乌拉姆在1964年提出的。数列的首两项U1和U2定义为1和2,对于n>2,Un为最小而又能刚好以一种方法表达成之前其中两个相异项的和。例如3=1+2,故U3=3;4=1+3(注意2+2不计算在内),故U4=4;5=2+3=1+4,所以它不在数列内。首几项是1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99...(OEIS:A002858

乌拉姆猜想这个数列密度为0,但它似乎约为0.07396。这是个数学上的未解决问题。

编程实现(python)

L = [0] * 100000
ans = [1,2] 
while len(ans) < 100:
    x = ans[len(ans)-1]
    flag = False
    for i in range(len(ans)-1): # generate the successive number by the known numbers
        if flag == False and L[x + ans[i]] == 0: # find a possible proper number x+ans[i]
            for j in range(x+ans[i]): # check if there is a smaller proper number than x+ans[i]
                if L[j] == 1:
                    ans.append(j)
                    L[j] = 2;
                    break
            else:
                ans.append(x + ans[i])
                L[x + ans[i]] = 2;
            flag = True
        L[x+ans[i]] += 1
print(ans)

参考

  • Guy, Richard (2004), Unsolved Problems in Number Theory (3 ed.), Springer-Verlag, ISBN 0-387-20860-7