跳转到内容

正规序

本页使用了标题或全文手工转换
维基百科,自由的百科全书

量子场论中,一组创生及湮灭算符的乘积称为是按正规序排列的,如果所有的创生算符排列在所有的湮灭算符的左侧,相应的乘积称为正规乘积[1]。类似地可以定义反正规序,在反正规序中,所有产生算符排列在湮灭算符的右侧。

记号

为任意创生和湮灭算符之乘积,则我们将按照正规序重新排列之后得到的算符用 或 表示。注意正规序只对算符乘积有意义,因为正规序不是线性关系,将正规序用在算符和并无太大作用。

玻色子

玻色子符合玻色–爱因斯坦统计

单个玻色子

单个玻色子有一个产生算符和一个湮灭算符:

  • :玻色子的产生算符
  • :玻色子的湮灭算符

则有:

其中 表示两个算符的对易子

例子

1. 最简单的例子是  的正规序,根据正规序的定义,可见这里的算符已经按照正规序排列,所以的正规序就是它自身:

2. 第二个例子是  的正规序,

这里,按照正规序的要求,产生算符  放到了湮灭算符 的左边。由玻色子算符的对易关系有:

维克定理中,两个产生或湮灭算符的乘积与它们的正规序之间的差,称为这两个算符的收缩。

3. 一个多算符的例子:

多个玻色子

对于 个不同的玻色子来说,有  个算符:

  • :第  个玻色子的产生算符
  • :第 个玻色子的湮灭算符

其中 .

它们满足下列对易关系:

其中 克罗内克函数

例子

1.对于两个玻色子 () ,有:

2. 对三个玻色子 () ,有:

由于 (参见对易关系),湮灭算符之间的顺序并不重要。

费米子

费米子服从费米-狄拉克统计

单个费米子

单个费米子有一个产生算符和一个湮灭算符:

  • :费米子的产生算符
  • :费米子的湮灭算符

它们满足下面的反对易关系:

其中  是反对易子。

与玻色子不同的是,对于费米子的正规序,每当重新排序引起两个算符的前后顺序发生变化时,需要额外引入一个负号。

例子

1. 最简单的例子是:

由于算符已经按正规序排列,所以其正规序就是它本身。反过来,若是产生算符排列在后面,则如前文所说,其正规序需要引入一个负号,即:

由费米子算符的反对易关系有:

与玻色子的情形一样,上式用于定义维克定理里面的收缩。

2. 其它情形下的正规序都是零,因为此时同一个湮灭算符或产生算符至少连续出现了两次。根据费米子的性质,此时结果为零,例如:

多个费米子

个费米子有  个产生湮灭算符,设:

  • 为第  个费米子的产生算符
  • 为第 个费米子的湮灭算符

其中 .

它们满足下列反对易关系:

其中 克罗内克函数

例子

1. 对两个费米子 () ,有:

由于算符已经按正规序排列,所以其正规序就是它本身。

由于两个算符的顺序发生了交换,所以要引入一个负号。

与玻色子的情形不同,此时产生算符之间的顺序是有关系的。

2. 对三个费米子 () ,有:

类似地有:

量子场论中的应用

任意算符的正规序的真空期望值为零。这是因为对于真空态来说,以及都是0。

这里 分别是(玻色子或费米子的)产生和湮灭算符。将正规序的这一性质与维克定理结合起来,便能大大简化场算符的真空期望值的计算。

参考文献

  1. ^ 尹道乐,尹澜. 2. 凝聚态量子理论. ISBN 9787301161609.