跳转到内容

柯里化

维基百科,自由的百科全书

计算机科学中,柯里化(英语:Currying),又译为卡瑞化加里化,是把接受多个参数函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数而且返回结果的新函数的技术。这个技术由克里斯托弗·斯特雷奇以逻辑学家哈斯凯尔·加里命名的,尽管它是Moses Schönfinkel戈特洛布·弗雷格发明的。

在直觉上,柯里化声称“如果你固定某些参数,你将得到接受余下参数的一个函数”。所以对于有两个变量的函数,如果固定了,则得到有一个变量的函数

理论计算机科学中,柯里化提供了在简单的理论模型中,比如:只接受一个单一参数的lambda演算中,研究带有多个参数的函数的方式。

函数柯里化的对偶是Uncurrying,一种使用匿名单参数函数来实现多参数函数的方法。例如:

var foo = function(a) {
  return function(b) {
    return a * a + b * b;
  }
}

这样调用上述函数:(foo(3))(4),或直接foo(3)(4)

动机

柯里化是一种处理函数中附有多个参数的方法,并在只允许单一参数的框架中使用这些函数。例如,一些分析技术只能用于具有单一参数的函数。现实中的函数往往有更多的参数。弗雷格表明,为单一参数情况提供解决方案已经足够了,因为可以将具有多个参数的函数转换为一个单参数的函数链。这种转变是现在被称为“柯里化”的过程。

在数学分析或计算机编程中,所有可能遇到的“普通”函数都可以被使用。但是,有些类别不可能使用柯里化;确实允许柯里化的最普通的类别是闭合的monoidal类别。一些编程语言几乎总是使用curried函数来实现多个参数;值得注意的例子是 ML 和 Haskell,在这两种情况下,所有函数都只有一个参数。这个属性是从lambda演算继承而来的,其中多参数的函数通常以柯里形式表示。

柯里化与部分求值是相关的,但不完全相同。在实作中,闭包的编程技术可以用来执行部分求值和一种卷曲,通过将参数隐藏在使用柯里化函数的环境中。

部分求值

柯里化有如仿效接受多个参数的函数评估过程,若以纸笔手工作业,要周密地写出评估过程中的所有步骤。

例如,给定某一函数 :

要评估 时,首先以 代入
因为结果会是函数 的输出,所以可定义为一个新函数
接下来将 参数以 替换,产生了

在纸上使用传统符号,上述过程通常是一次代入两个参数 的值就完成了。
而每个参数其实是依次序替换,在每一步替换的中介函数只能接受单一个参数。

以上范例有点缺陷,虽然应用上类似函数的部分求值。对柯里化的过程来说,但并非完全相同(见下文)。

示例

柯里化(Currying)是产生一系列连锁函数的一种方法,其中每个函数只有一个参数。借由另一个柯里化之后的新函数,传回其它剩余参数的功能,将原本以多个参数应用的函数“隐藏”起来,如下所述。

给定带有 xy两个参数的函数 f,也就是,

然后可以构造一个与原来的 f 相关的新函数 hx。这个函数的形式只有单一参数 y,并给定该参数,则 hx 返回 f(x,y)。也就是,

.

在这里应该了解 h上的下标 x是当成隐藏作用的符号设施,或者说把一个参数放在一边,使原函数变成只带一个参数。柯里化(Currying)提供了符号标记上的技巧,将函数因而抽象化。

这个技巧要利用 map或函数构造子。符号 用于表示抽象化的实际行为。 例如以 这样子来表示:某个函数将一个参数 y映射到结果 z

然后考虑从 hx 记号中删掉下标 x,就得到了一个 柯里化表示的代表符 h; 而成为另一个给予 x 能把其“值”传回的不同函数 hx;它恰好是一个函数构造,其映射过程 可以用 语句来表达,或者描述为一个将参数 y映射到结果 z的函数。也就是,

,

用不同代表符号(但意义相同)来看,

函数 h 本身现在可用 hx 相似的表示,并写成

能够负责并处理对开头涉及的函数参数。鉴于上述情况,柯里化的行为可被理解为一函数,给予某些任意的 f,即涉及相关的 h函数可以产生 h的所述功能;论及 f。也就是,

或相当于

这说明了柯里化的基本性质:它是参数重新定位的机制,将原函数中的每一个参数绑定到不同的新函数,而返回另一个相关的函数。也就是给定函数 f原本传回一个“值”,则柯里化“构造”了一个新函数 h 而传回的是涉及 f的函数。另一种理解柯里化的不同方式,则意识到它只是一个代数游戏,符号的句法重新排列。人们不会问这些符号的“含义”是什么; 一个人只同意他们的重新排列规则。 要看出这一点,注意原来的函数 f本身可能写成

与上面的函数 h互相比较,可以看出这两种形式都重新排列了括号,以及将逗号转换为箭头。回到前面的例子,

然后有,

作为上例柯里化的相等物。 添加一个参数到 g 然后给出

以及

剥除参数的方法或许更容易地理解,例如有四个参数的函数:

经过上述操作,导出为形式

这应用到三元组之上可得到

.

然后适当地写成柯里化形式

一直继续玩着重新安排符号的代数游戏,最终导出了完全的柯里化形式

对箭头运算符一般理解是右结合的,所以上面大部分的括号是多余的,在意义不变的情况下可以删除掉。因此,写成了很常见的

也就是函数 f完全的柯里化形式。

定义

从非形式的一般定义开始,柯里化是最容易理解的,然后再塑造它以适应许多不同的领域。
首先说明一些符号的标记法。

表示从 映射到 的函数

表示从 的所有函数。

这里, 可以是集合、或者是类型,或者它们可以是其它型别的物件,如下所述。

表示有序对,即笛卡尔乘积。

给定类型为 的函数柯里化即构造或创建一个新的函数:

也就是说,取一个类型为 的参数,并返回一个类型为 的函数。Uncurrying则相反。

集合论

数理领域的集合论中,符号 用于表示从 集合映射到 集合的函数。柯里化是指从 映射到 函数,和从 之中映射,由 函数,这些组合的自然变换。事实上是这种自然变换关系,阐述了出现在集合论中的指数符号。在集合的范畴论中 被称为指数物件。

函数空间

在函数空间理论中,如泛函分析或拓扑的同伦,人们通常对拓扑空间之间的连续函数感兴趣。从 所有的函数集,写成 (Hom函子)并使用 来表示连续函数的子集。在这里的 一一对应的

uncurrying 是反向的映射。如果从 集合为连续函数 给出了紧致开拓扑紧致开拓扑,而且如果 空间是局部豪斯多夫紧致的,那么 是一个连续函数,也是同胚。尽管可能有更多情况,当 紧生成的时候,情况都是相同的。

这结果发展成了指数表示法

有时称为指数法则。 而有用的推论是,一个函数当且仅当其柯里化形式是连续时,它才是连续的。另一个重要的结果是应用程序映射(在这种情况通常称为“评估”)是连续的(注意eval在计算机科学中的概念与此严格不同)。也就是说,

是紧致开放的,而且 局部紧致的豪斯多夫时,那上述式子是连续的。这两个结果对于确立同伦的连续性非常重要,亦即当 是单位区间 ,所以 能想成 就是从 的两个函数的同伦,或者等价地,是 中的单个(连续)路径。

代数拓扑

域理论

在序理论对于偏序集合的格,当格是给定的 Scott拓扑时,则 会是一个连续函数。为了提供 lambda演算的语义学,要先研究 Scott连续函数(因为普通集合理论不适合这样做)。更一般地说,现在研究 Scott连续函数的域理论中,含括了计算机算法的指称语义学。

请注意,Scott拓扑结构与拓扑空间范畴中可能遇到的许多常见拓扑结构完全不同; Scott拓扑通常更为精巧,而不是很严审的。连续性的概念使它出现在同伦类型理论中,粗略地说,两个计算机程序可以被认为是同伦的,如果他们可以“连续”地从一个重构到另一个,即计算得出相同的结果。

Lambda演算

型别理论

在型别理论中,对于计算机科学型别系统的一般概念,被形式化为一个具体的代数类型。例如写为 时, 意指那个 是一种类型,而 箭头符号代表是类型构造函数,特别是指函数类型或箭头类型。类似地,类型的笛卡尔积是由 构造函数,而建构出的复合结构类型。

型别理论方法可以用 ML编程语言表达,而受启发衍生出的语言有:CaML,Haskell和F#。

逻辑

Curry-Howard下,柯里化和对偶柯里化的存在相当于逻辑定理,因为多元组(型别积, product type)对应于逻辑中的且连接,而函数类型对应于蕴涵

范畴论

历史

“科里化”一词由克里斯托弗·斯特雷奇创造,以逻辑学家哈斯凯尔·加里命名。另外一个名词 "Schönfinkelisation" 则以Moses Schönfinkel命名。在数学历史中,这个原理可以追溯到1893年戈特洛布·弗雷格的工作。

参见