跳转到内容

埃尔米特伴随

维基百科,自由的百科全书

数学中,特别是算子理论中,每个内积空间中的线性算子 都个有一个对应的伴随算子(英语:adjoint operator),记作 ,伴随算子可由以下关系定义

其中 向量空间中的内积

算子 的伴随 亦可称作埃尔米特伴随(英语:Hermitian adjoint),以夏尔·埃尔米特命名。在物理学,尤其是量子力学中,算子 的埃尔米特伴随常被记作 狄拉克符号记法)。

有限维向量空间中算子可以以矩阵的形式表示,而伴随算子的矩阵等于原矩阵的共轭转置

泛函分析中,上述对伴随算子的定义可以直接套用于希尔伯特空间中的线性算子

有界算子

假设H是一个希尔伯特空间,带有内积 。考虑连续线性算子A : HH(这与有界算子相同)。

利用里斯表示定理,我们可以证明存在唯一的连续线性算子

A* : HH具有如下性质:

,对所有

这个算子A* 是A的伴随。

这可以视为一个方块矩阵的转置共轭伴随矩阵推广,在标准(复)内积下具有相似的性质。

性质

马上可得的性质

  1. A** = A
  2. A可逆,则A* 也可逆,且 (A*)−1 = (A−1)*
  3. (A + B)* = A* + B*
  4. A)* = λ* A*,这里λ* 表示复数λ的复共轭
  5. (AB)* = B* A*

如果我们定义A算子范数

而且有

希尔伯特空间H上有界线性算子与伴随算子以及算子范数给出一个C*代数例子。

A与它的伴随的的关系为

第一个等式的证明:

第二个等式由第一个推出,于两边取正交空间即可。注意到一般地,像未必是闭的,但连续算子的核总是闭的。

埃尔米特算子

有界算子A: HH称为埃尔米特或自伴如果

A = A*

这等价于

在某种意义下,这种算子起着实数(等于他们的复共轭)的作用。他们在量子力学中作为实值可观测量的模型。更多细节参见自伴算子一文。

无界算子的伴随

许多重要的算子不是连续的或只定义在希尔伯特的一个子空间上。在这种情形,我们仍然能定义伴随,在自伴算子一文有解释。

其他伴随

范畴论中,方程

形式上类似地定义了伴随函子偶性质,这也是伴随函子得名之由来。

又见

参考文献

  • Walter Rudin. Functional Analysis(2nd ed.), China Machine Press, 2006