跳转到内容

互穿聚合物网络

维基百科,自由的百科全书
氰化镉(Cd(CN)2)的结构,突显互穿结构。蓝色是一个Cd(CN)2子结构,红色是另一个Cd(CN)2子结构。

互穿聚合物网络 (Interpenetrating polymer network, IPN) 是一种由两个以上网络的聚合物部分交错,但彼此没有共价键结的网络。除非化学键被打破,否则网络无法分离。网络可以想像成缠结在一起,无法拉开,但彼此之间没有任何化学键结合。[1]

IUPAC definition
Interpenetrating polymer network (IPN): A polymer comprising two
or more networks which are at least partially interlaced on a molecular scale
but not covalently bonded to each other and cannot be separated unless chemical
bonds are broken.

Note: A mixture of two or more pre-formed polymer networks is not an IPN.[2]

Semi-interpenetrating polymer network (SIPN): A polymer comprising one or
more networks and one or more linear or branched polymer(s) characterized by the
penetration on a molecular scale of at least one of the networks by at least some
of the linear or branched macromolecules.

Note: Semi-interpenetrating polymer networks are distinguished from
interpenetrating polymer networks because the constituent linear or branched
polymers can, in principle, be separated from the constituent polymer network(s)
without breaking chemical bonds; they are polymer blends.[3]

Sequential interpenetrating polymer network: Interpenetrating polymer network
prepared by a process in which the second component network is formed
following the formation of the first component network.[4]

Sequential semi-interpenetrating polymer network: Semi-interpenetrating
polymer network
prepared by a process in which the linear or branched
components are formed following the completion of the reactions that lead to
the formation of the network(s) or vice versa.[5]

简单地混合两种或多种聚合物不会产生互穿聚合物网络(聚合物共混物),也不会由一种以上的单体相互结合形成一个网络(异质聚合物共聚物)来创建聚合物网络。

仅将两种或两种以上的聚合物混合并不能产生互相穿透的聚合物网络 (聚合物共混物),也不是由一种以上的单体互相结合所组成的聚合物网络 (异质聚合物或共聚物)。

除了互穿聚合物网络,还有半互穿聚合物网络(semi-interpenetrating polymer networks,SIPN )[6]和伪互穿聚合物网络(pseudo-interpenetrating polymer networks)。[7]

制备IPN和SIPN,可通过不同组分同时形成[8][9]或依次形成。[10][11]

历史

第一个已知的互穿聚合物网络是1914年由乔纳斯·艾尔斯沃思(Jonas Aylsworth)制造的酚醛树脂与硫化天然橡胶的组合。[12]然而,这是在斯陶丁格提出大分子假说之前,因此当时尚未使用“聚合物”或“IPN”这些术语。1960年,J.R. Millar首次在讨论磺化和未磺化的苯乙烯-二乙烯基苯共聚物网络时引入了“互穿聚合物网络”这一术语。[13]

机械性能

分子间的混合往往会使某些互穿聚合物网络材料的玻璃化转变区域比其组分聚合物更宽。由于具有相对恒定且较高的相位角,这一独特特性使得IPN材料在宽温度和频率范围内表现出优异的机械阻尼性能。[14]在由橡胶状和玻璃状聚合物组成的IPN中,与其组成的聚合物相比,可以观察到显著的增韧效果。当玻璃状成分形成离散的、不连续的相时,连续橡胶状相的弹性本质能够得到保持,同时增加了材料的整体韧性和断裂伸长率。另一方面,当玻璃状聚合物在橡胶状网络中形成双连续相时,IPN材料则可能表现为抗冲击塑料。[15]

形态学

大多数互穿聚合物网络(IPN)在分子尺度上并没有完全互穿,而是形成了小的分散相或双连续相形态,其特征长度约为几十纳米。[12]然而,由于这些长度尺度相对较小,通常在宏观尺度上被认为是均匀的。这些结构域的特征长度通常与交联点之间的链长相关,因此相的形态往往由组分网络的交联密度决定。IPN中的相分离动力学可以由成核生长以及Spinodal分解始发形成调幅组织的强化机制引发,前者会生成类似分散球体的离散相,而后者则会形成类似互连圆柱体的双连续相。[16]与许多典型的相分离过程相反,由于任一网络中交联点的形成,粗化过程(即相的长度尺度随着时间的推移而增大)可能会受到阻碍。[12]此外,与简单的聚合物共混物相比,IPN通常能够在较长时间内保持这些复杂的形态。[17]

应用

互穿聚合物网络已被用于汽车零部件(包括现代汽车烤漆)、阻尼材料、医疗设备、模塑料和工程塑料中。[14]虽然IPN材料的增强机械性能带来了许多好处,但诸如抗溶剂膨胀等其他特性也使得IPN成为具有商业价值的材料。[14]近年来,IPN的应用和研究领域还包括药物输送系统、能量存储材料和组织工程等。[18]

参考

  1. ^ 国际纯化学和应用化学联合会化学术语概略,第二版。(金皮书)(1997)。在线校正版: (2006–) "interpenetrating polymer network"。doi:10.1351/goldbook.I03117
  2. ^ Jenkins, A. D.; Kratochvíl, P.; Stepto, R. F. T.; Suter, U. W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996) (PDF). Pure and Applied Chemistry. 1996, 68 (12): 2287–2311 [2013-07-25]. S2CID 98774337. doi:10.1351/pac199668122287. (原始内容 (PDF)存档于2016-03-04). 
  3. ^ Jenkins, A. D.; Kratochvíl, P.; Stepto, R. F. T.; Suter, U. W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996) (PDF). Pure and Applied Chemistry. 1996, 68 (12): 2287–2311 [2013-07-25]. S2CID 98774337. doi:10.1351/pac199668122287. (原始内容 (PDF)存档于2016-03-04). 
  4. ^ Alemán, J. V.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R. F. T. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic–organic hybrid materials (IUPAC Recommendations 2007) (PDF). Pure and Applied Chemistry. 2007, 79 (10): 1801–1829 [2013-07-25]. S2CID 97620232. doi:10.1351/pac200779101801. (原始内容 (PDF)存档于2014-02-11). 
  5. ^ Alemán, J. V.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R. F. T. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic–organic hybrid materials (IUPAC Recommendations 2007) (PDF). Pure and Applied Chemistry. 2007, 79 (10): 1801–1829 [2013-07-25]. S2CID 97620232. doi:10.1351/pac200779101801. (原始内容 (PDF)存档于2014-02-11). 
  6. ^ 国际纯化学和应用化学联合会化学术语概略,第二版。(金皮书)(1997)。在线校正版: (2006–) "semi-interpenetrating polymer network"。doi:10.1351/goldbook.S05598
  7. ^ Sperling, L.H., J. Polymer Sci.
  8. ^ 国际纯化学和应用化学联合会化学术语概略,第二版。(金皮书)(1997)。在线校正版: (2006–) "simultaneous interpenetrating polymer network"。doi:10.1351/goldbook.{{{file}}}Error in template * mandatory parameter missing (GoldBookRef): file
  9. ^ 国际纯化学和应用化学联合会化学术语概略,第二版。(金皮书)(1997)。在线校正版: (2006–) "simultaneous semi-interpenetrating polymer network"。doi:10.1351/goldbook.{{{file}}}Error in template * mandatory parameter missing (GoldBookRef): file
  10. ^ 国际纯化学和应用化学联合会化学术语概略,第二版。(金皮书)(1997)。在线校正版: (2006–) "sequential interpenetrating polymer network"。doi:10.1351/goldbook.{{{file}}}Error in template * mandatory parameter missing (GoldBookRef): file
  11. ^ 国际纯化学和应用化学联合会化学术语概略,第二版。(金皮书)(1997)。在线校正版: (2006–) "sequential semi-interpenetrating polymer network"。doi:10.1351/goldbook.{{{file}}}Error in template * mandatory parameter missing (GoldBookRef): file
  12. ^ 12.0 12.1 12.2 American Chemical Society. Meeting (202nd : 1991 : New York, N.Y.). Interpenetrating polymer networks. Klempner, Daniel., Sperling, L. H. (Leslie Howard), 1932-, Utracki, L. A., 1931-, American Chemical Society. Division of Polymeric Materials: Science and Engineering., Chemical Congress of North America (4th : 1991 : New York, N.Y.). Washington, DC: American Chemical Society. 1994. ISBN 0-8412-2528-1. OCLC 28337384. 
  13. ^ Millar, J. R. 263. Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. J. Chem. Soc. 1960: 1311–1317. ISSN 0368-1769. doi:10.1039/JR9600001311 (英语). 
  14. ^ 14.0 14.1 14.2 Sperling, L. H. Interpenetrating polymer networks and related materials. Journal of Polymer Science: Macromolecular Reviews. 1977, 12 (1): 141–180. doi:10.1002/pol.1977.230120103. 
  15. ^ Curtius, A. J.; Covitch, M. J.; Thomas, D. A.; Sperling, L. H. Polybutadiene/polystyrene interpenetrating polymer networks. Polymer Engineering and Science. March 1972, 12 (2): 101–108. ISSN 0032-3888. doi:10.1002/pen.760120205 (英语). 
  16. ^ Donatelli, A. A.; Sperling, L. H.; Thomas, D. A. Interpenetrating Polymer Networks Based on SBR/PS. 1. Control of Morphology by Level of Cross-Linking. Macromolecules. July 1976, 9 (4): 671–675. Bibcode:1976MaMol...9..671D. ISSN 0024-9297. doi:10.1021/ma60052a029 (英语). 
  17. ^ Binder, K.; Frisch, H. L. Phase stability of weakly crosslinked interpenetrating polymer networks. The Journal of Chemical Physics. 1984-08-15, 81 (4): 2126–2136. Bibcode:1984JChPh..81.2126B. ISSN 0021-9606. doi:10.1063/1.447837 (英语). 
  18. ^ Micro- and nano-structured interpenetrating polymer networks : from design to applications. Thomas, Sabu. Hoboken. 2016-03-03. ISBN 978-1-119-13895-2. OCLC 933219019.