跳转到内容

Numba

本页使用了标题或全文手工转换
维基百科,自由的百科全书
Numba
原作者Continuum Analytics
开发者社区计划
首次发布2012年8月15日,​12年前​(2012-08-15
当前版本0.60.0[1](2024年1月13日,​10个月前​(2024-01-13
预览版本0.61.0dev0(2024年5月15日,​6个月前​(2024-05-15
原始码库 编辑维基数据链接
编程语言Python, C
操作系统跨平台
类型科学计算英语List of numerical analysis software
许可协议
  • 2句版BSD许可证
编辑维基数据链接
网站numba.pydata.org

Numba是开源JIT编译器,它通过llvmlite绑定包,使用LLVM将包括很多NumPy函数的聚焦数值计算的Python子集,翻译成快速的机器码。它为在CPU和GPU上并行化Python代码提供了大量选项,而经常只需要微小的代码变更。

Numba由Travis Oliphant英语Travis Oliphant在2012年开创并在github[2]上活跃开发而经常有新的发行。这个计划由Anaconda公司的开发者驱动,并受到DARPA、Gordon和Betty Moore基金会、IntelNvidiaAMD和GitHub上的社区贡献者的支持。

例子

Numba可以通过简单的在进行数值计算的Python函数上应用numba.jit修饰符来使用:

import numba
import random

@numba.jit
def monte_carlo_pi(n_samples: int):
    acc = 0
    for i in range(n_samples):
        x = random.random()
        y = random.random()
        if (x**2 + y**2) < 1.0:
            acc += 1
    return 4.0 * acc / n_samples

即时编译在函数被调用时透明地进行:

>>> monte_carlo_pi(1000000)
3.14

Numba的网站[3]包含了更多的例子,还有如何从Numba获得更好的性能的资讯。

GPU支持

Numba可以把Python函数编译成GPU代码。目前能获得二个后端:

替代方式

Numba是使Python快速的方法之一,它编译包含Python和Numpy代码的特定函数。存在很多用Python进行快速数值计算的替代方式,比如CythonTensorFlowPyTorchChainer英语Chainer、Pythran[6]PyPy

引用

  1. ^ Releases · numba/numba. GitHub. [2024-11-01]. (原始内容存档于2022-08-31) (英语). 
  2. ^ github页面存档备份,存于互联网档案馆
  3. ^ 网站页面存档备份,存于互联网档案馆
  4. ^ Numba for CUDA GPUs. [2020-09-29]. (原始内容存档于2019-04-16). 
  5. ^ Numba for AMD ROC GPUs. [2020-09-29]. (原始内容存档于2019-04-16). 
  6. ^ Pythran页面存档备份,存于互联网档案馆