跳转到内容

3T3-L1

维基百科,自由的百科全书

3T3-L1细胞系衍生自小鼠胚胎来源的NIH 3T3细胞系,有着成纤维细胞样的形态,但在特定条件下,这些细胞会分化脂肪细胞样的表型。3T3-L1细胞对脂溶性激素和药物敏感,包括肾上腺素异丙肾上腺素英语Isoprenaline胰岛素[1]。3T3-L1细胞常用于脂肪组织的相关研究,其分化而来的脂肪样细胞是脂肪细胞生物学研究中最常用的一个体外模型[2]

成脂过程

3T3-L1前体脂肪细胞作为一种具定向分化潜能的小鼠胚胎成纤维细胞,在诱导剂的作用下就会激活脂肪细胞分化信号通路[3][4],继而启动甘油三酯的合成与脂滴积累,并且在外观上更接近脂肪细胞,从多边形逐渐变成近圆形或圆形,细胞内出现大小不等的脂滴,充满着细胞的大部分胞体。这个过程中涉及多种转录因子 (如PPARγ[5]脂联素[6]增强子结合蛋白α英语CCAAT-enhancer-binding proteins[7]等)、细胞周期蛋白及脂肪合成相关基因的表达调控,以及活性的转变。倘若有关细胞再经由胰岛素、地塞米松 (Dex) 和3-异丁基-1-甲基黄嘌呤英语IBMX (IBMX) 共同处理的经典鸡尾酒法的步骤后[8][9],就可以分化为成熟的白色脂肪细胞,然而此方式存在着诱导效率低且分化效果不理想的问题[10]。有研究指出,只要在经典鸡尾酒诱导剂的基础上适量加用单一过氧化物酶体增生因子活化γ型受体 (PPARγ) 激动剂[11],如罗格列酮,即可促进成脂过程,效果优于单一使用吲哚美辛等非类固醇类抗炎药,惟两者合用效果更佳。

参考文献

  1. ^ Green H, Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975, 5 (1): 19–27. PMID 165899. doi:10.1016/0092-8674(75)90087-2. 
  2. ^ Morrison, S; McGee, SL. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages.. Adipocyte. NaN, 4 (4): 295–302 [2019-11-19]. PMID 26451286. doi:10.1080/21623945.2015.1040612. 
  3. ^ Chen, D; Wang, Y; Wu, K; Wang, X. Dual Effects of Metformin on Adipogenic Differentiation of 3T3-L1 Preadipocyte in AMPK-Dependent and Independent Manners.. International journal of molecular sciences. 2018-05-23, 19 (6) [2019-11-19]. PMID 29789508. doi:10.3390/ijms19061547. 
  4. ^ Chen, J; Liu, Y; Lu, S; Yin, L; Zong, C; Cui, S; Qin, D; Yang, Y; Guan, Q; Li, X; Wang, X. The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation.. International journal of obesity (2005). 2017-02, 41 (2): 299–308 [2019-11-19]. PMID 27780975. doi:10.1038/ijo.2016.189. 
  5. ^ Adaikalakoteswari, A; Vatish, M; Alam, MT; Ott, S; Kumar, S; Saravanan, P. Low Vitamin B12 in Pregnancy Is Associated With Adipose-Derived Circulating miRs Targeting PPARγ and Insulin Resistance.. The Journal of clinical endocrinology and metabolism. 2017-11-01, 102 (11): 4200–4209 [2019-11-19]. PMID 28938471. doi:10.1210/jc.2017-01155. 
  6. ^ Hu, E; Liang, P; Spiegelman, BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity.. The Journal of biological chemistry. 1996-05-03, 271 (18): 10697–703 [2019-11-19]. PMID 8631877. doi:10.1074/jbc.271.18.10697. 
  7. ^ Gregoire, FM; Smas, CM; Sul, HS. Understanding adipocyte differentiation.. Physiological reviews. 1998-07, 78 (3): 783–809 [2019-11-19]. PMID 9674695. doi:10.1152/physrev.1998.78.3.783. 
  8. ^ Tontonoz, P; Nagy, L; Alvarez, JG; Thomazy, VA; Evans, RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL.. Cell. 1998-04-17, 93 (2): 241–52 [2019-11-19]. PMID 9568716. doi:10.1016/s0092-8674(00)81575-5. 
  9. ^ Ying, W; Riopel, M; Bandyopadhyay, G; Dong, Y; Birmingham, A; Seo, JB; Ofrecio, JM; Wollam, J; Hernandez-Carretero, A; Fu, W; Li, P; Olefsky, JM. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity.. Cell. 2017-10-05, 171 (2): 372–384.e12 [2019-11-19]. PMID 28942920. doi:10.1016/j.cell.2017.08.035. 
  10. ^ Shen, L; Gan, M; Li, Q; Wang, J; Li, X; Zhang, S; Zhu, L. MicroRNA-200b regulates preadipocyte proliferation and differentiation by targeting KLF4.. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018-07, 103: 1538–1544 [2019-11-19]. PMID 29864940. doi:10.1016/j.biopha.2018.04.170. 
  11. ^ Peng, J; Li, Y; Wang, X; Deng, S; Holland, J; Yates, E; Chen, J; Gu, H; Essandoh, K; Mu, X; Wang, B; McNamara, RK; Peng, T; Jegga, AG; Liu, T; Nakamura, T; Huang, K; Perez-Tilve, D; Fan, GC. An Hsp20-FBXO4 Axis Regulates Adipocyte Function through Modulating PPARγ Ubiquitination.. Cell reports. 2018-06-19, 23 (12): 3607–3620 [2019-11-19]. PMID 29925002. doi:10.1016/j.celrep.2018.05.065. 

外部链接