行向量与列向量
“m-by-n matrix”的各地常用名称 | |
---|---|
中国大陆 | 行列矩阵 |
台湾 | 列行矩阵 |
“横排(row)”的各地常用名称 | |
---|---|
中国大陆 | 行 |
台湾 | 列 |
“纵排(column)”的各地常用名称 | |
---|---|
中国大陆 | 列 |
台湾 | 行 |
在线性代数中,行向量(Row vector)是一个1×n的矩阵,即矩阵由一个含有个元素的行所组成:
- 。
行向量的转置是一个列向量,反之亦然。
所有的行向量的集合形成一个向量空间,它是所有列向量集合的对偶空间。
符号
为简化书写、方便排版起见,有时会以加上转置符号T的行向量表示列向量。
为进一步化简,习惯上会把行向量和列向量都写成行的形式。不过行向量的元素是用空格隔开,列向量则用分号隔开。例如,假设是一个行向量,那么和就可以如下方式表示。
参见
参考文献
- Axler, Sheldon Jay, Linear Algebra Done Right 2nd, Springer-Verlag, 1997, ISBN 0-387-98259-0
- Lay, David C., Linear Algebra and Its Applications 3rd, Addison Wesley, August 22, 2005, ISBN 978-0-321-28713-7
- Meyer, Carl D., Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), February 15, 2001 [2017年5月13日], ISBN 978-0-89871-454-8, (原始内容存档于2001年3月1日)
- Poole, David, Linear Algebra: A Modern Introduction 2nd, Brooks/Cole, 2006, ISBN 0-534-99845-3
- Anton, Howard, Elementary Linear Algebra (Applications Version) 9th, Wiley International, 2005
- Leon, Steven J., Linear Algebra With Applications 7th, Pearson Prentice Hall, 2006