相位偏移调制,又称相位键移(PSK,Phase-Shift Keying)是一种利用相位差异的信号来传送资料的调制方式。该传送信号必须为正交信号,其基底更须为单位化信号。
- 一个信号所代表的数学公式
一般调制信号的改变部分可分为幅度A(ASK用)、相位(PSK用)及频率(FSK用)三种。其中PSK即利用相位差异来产生的调制方式。
- MPSK通用的传输符号之公式。
PSK又可称M-PSK或MPSK,目前有BPSK、QPSK、16PSK、64PSK等等,常用的只有QPSK。而M是代表传送信号的符号(symbol)种类。符号越多,传送的位元数越多,自然在固定时间可传送越多的资料量(bps)。
- 传输量公式。
假设各MPSK皆在同一能量下传送,PSK会因为符号种类(M)的提升使比特差错率(Bits Error Rate,BER)快速上升。所以在符号数M大于16后都由QAM来执行调制工作。QPSK如果用格雷码对映的方式,其BER会和BPSK一样。所以目前常用的只有QPSK。
二位元相位偏移调制(BPSK)
BPSK(Binary Phase-shift keying)是PSK系列中最简单的一种。它是使用两个相位差180°且正交的信号表示0及1的资料。它在坐标图放置的点并无特别设计,两点皆放在实数轴,分别在0°的点及180°的点。这种系统是在PSK系列中抗杂讯能力(SNR)是最佳的,在传送过程中即使严重失真,在解调时仍可尽量避免错误的判断。然而,由于只能调制1 bit至symbol上,所以不适合用在高带宽资料传送需求的系统上。
标准BPSK遵循如下公式:
公式包含0和π两个相位。在具体形式中,二进制数据以如下形式传送:
- 代表零;
- 代表一。
其中fc代表载波频率。
因此,信号空间可以由单个基函数表示:
其中 代表一, 代表零。
BPSK 的比特差错率(BER) 在加性高斯白杂讯下表示之公式:
BPSK 的BER和和它的符号错误率(SER)是相同的。
四位元相位偏移调制(QPSK)
QPSK,有时也称作四相位PSK、4-PSK、4-QAM,在坐标图上看是圆上四个对称的点。通过四个相位,QPSK可以编码2位元符号。图中采用格雷码来达到最小比特差错率(BER) — 是BPSK的两倍. 这意味着可以在BPSK系统带宽不变的情况下增大一倍数据传送速率或者在BPSK数据传送速率不变的情况下将所需带宽减半。
数学分析表明,QPSK既可以在保证相同信号带宽的前提下倍增BPSK系统的数据速率,也可以在保证数据速率的前提下减半BPSK系统的带宽需求。在后一种情况下,QPSK的BER与BPSK系统的BER完全相同。
由于无线电通讯的带宽都是由FCC一类部门所事先分配规定的,QPSK较之于BPSK的优势便开始显现出来:QPSK系统在给定的带宽内可以在BER相同的情况下可以提供BPSK系统两倍的带宽。采取QPSK系统在实际工程上的代价是其接收设备要远比BPSK系统的接收设备复杂。然而,随着现代电子技术的迅猛发展,这种代价已经变得微不足道。
较之BPSK系统,QPSK系统在接收端存在相位模糊的问题,所以实际应用中经常采取差分编码QPSK的方式。
QPSK遵循如下公式:
公式包含π/4、3π/4、5π/4与7π/4四个相位。
在二维信号空间中得出的以单位基函数表示的结果为:
第一个基函数被用作信号的在相分量,第二个基函数被用作信号的正交分量。
根据上面的理论推导,QPSK的BER等同于BPSK,即:
然而,为了实现相同的BER,QPSK系统需要使用BPSK两倍的功率(假设两个位元同时传输)。错误率模型由如下公式给出:
|
|
|
.
|
.
如果信噪比较高,则实际错误率模型可估计为:
参见