跳转到内容

毕氏定理

本页使用了标题或全文手工转换
维基百科,自由的百科全书
直角边的平方和等于斜边的平方

毕氏定理(英语:Pythagorean theorem / Pythagoras' theorem)是平面几何中一个基本而重要的定理。毕氏定理说明,平面上的直角三角形的两条直角边的长度(较短直角边古称勾长、较长直角边古称股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。毕氏定理是人类早期发现并证明的重要数学定理之一。

此定理又称勾股定理商高定理毕达哥拉斯定理新娘座椅定理百牛定理。“毕氏”所指的是其中一个发现这个定理的古希腊数学家毕达哥拉斯,但历史学家相信这个定理早在毕达哥拉斯出生的一千年前已经在世界各地广泛应用。不过,现代西方数学界统一称呼它为“毕达哥拉斯定理”。日本除了翻译西方的“毕达哥拉斯之定理”外亦有“三平方之定理”的称呼。

早在有明文描述此定理前,古埃及公元前1600年的纸莎草记载有这一组毕氏数,而古巴比伦泥板纪录的最大的一个毕氏数组是。由于古代没有如此高的精确测量工具,因此一般相信得到如此巨大的毕氏数必须知道毕氏定理。

现在毕氏定理可考的严谨数学证明,起源于略晚于毕德格拉斯的欧几里得几何原本中,卷一命题47。但奇怪的是,这个定理从未被叫做“欧几里得定理”。

周髀算经》中,用商高周公对谈的方式,提出这组毕氏数为例,解释了毕氏定理要素[1],论证“弦长平方必定是两直角边的平方和”,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则,周髀算经没有给出证明[2]。且周髀算经成书年份不明,可能是公元前一千多年(比毕达哥拉斯早五百年),但也可能是西汉年代(比毕达格拉斯晚500年)。另外,除了周髀算经以外再无其他典籍纪载商高,无法得知是否真有商高其人,或者周髀算经作者虚构人物。

有些参考资料提到法国和比利时将毕氏定理称为驴桥定理,但驴桥定理是指等腰三角形的二底角相等,非毕氏定理[3]

毕氏定理有四百多个证明,如微分证明,面积证明等。

定理

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是,斜边长度是,那么可以用数学语言表达:



余弦定理是毕氏定理的一个推广[4]。毕氏定理现约有400种证明方法,是数学定理中证明方法最多的定理之一[5]

其他形式

如果是斜边的长度是另外两条边的长度,毕氏定理可以写成:

如果知道,可以这样写:

如果斜边的长度和其中一条边()知道,那另一边的长度可以这样计算:

简单来说,只要知道直角三角形的其中两条边长,便能求出第三条边长。

毕氏数组

毕氏数组是满足毕氏定理正整数,其中的称为毕氏数。例如就是一组毕氏数组。

任意一组毕氏数可以表示为如下形式:,其中

历史

公元前18世纪记录各种毕氏数组的巴比伦石板

这个定理的历史可以被分成三个部分:发现毕氏数、发现直角三角形中边长的关系、及其定理的证明。

毕氏数

毕氏数的发现时间较早,例如埃及的纸草书里面就有这一组毕氏数,而巴比伦泥板涉及的最大的一个毕氏数组是。后来的中国的算经、印度与阿拉伯的数学书也有记载[6]。在中国,《周髀算经》中也记述了这一组毕氏数[7]金朝数学家李冶在《测圆海镜》中,通过勾股容圆图式的十五个勾股形和直径的关系,建立了系统的天元术,推导出692条关于勾股形的各边的公式,其中用到了多组毕氏数作为例子。

普遍定理的发现

巴比伦人得到的毕氏数的数量和质量不太可能纯从测量手段获得。之后的毕达哥拉斯本人并无著作传世,不过在他死后一千年,5世纪的普罗克勒斯欧几里德的名著《几何原本》做注解时将最早的发现和证明归功于毕达哥拉斯学派

普鲁塔克西塞罗也将发现的功劳归于毕达哥拉斯,但没有任何证据表明毕达哥拉斯证明了毕氏定理,以素食闻名的毕达哥拉斯杀牛更是不可思议。

在中国,记载秦朝的算数书并未记载毕氏定理,只是记录了一些毕氏数。定理首次载于书面则是在成书于西汉但内容收集整理自公元前一千多年以来的《周髀算经》“荣方问于陈子”一节中:

因此此定理也被称之为陈子定理。

东汉末年赵爽周髀算经注》《勾股圆方图注》记载:

赵爽《勾股圆方图》

在《九章算术注》中,刘徽反复利用毕氏定理求圆周率,并利用“割补术”做“青朱出入图”完成毕氏定理的几何图形证明。

直至现时为止,仍有许多关于毕氏定理是否不止一次被发现的辩论。

证明

毕达哥拉斯学派的证明没有流传下来,流传下来书面证明最早见于《几何原本》第一册的第47个命题。在中国,东汉末年吴国的赵爽最早给出毕氏定理的证明。巴勒蒂·克尔什纳·蒂尔特吉英语Bharati Krishna Tirthaji吠陀数学一书中声称古代印度教吠陀证明了毕氏定理。

证明

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的Pythagorean Proposition一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦余弦函数的泰勒级数)来证明毕氏定理,但是,因为所有的基本三角恒等式都是建基于毕氏定理,所以不能作为毕氏定理的证明(参见循环论证)。

赵爽勾股圆方图证明法

中国三国时期赵爽为证明毕氏定理作“勾股圆方图”即“弦图”,按其证明思路,其法可涵盖所有直角三角形,为东方特色毕氏定理无字证明法。2002年第24届国际数学家大会(ICM)在北京召开。中国邮政发行一枚邮资明信片,邮资图就是这次大会的会标—中国古代证明毕氏定理的赵爽弦图。

赵爽 勾股圆方图证明毕氏定理法动画

刘徽“割补术”证明法

中国魏晋时期数学家刘徽依据其“割补术”为证毕氏定理另辟蹊径而作“青朱出入图”。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。[8]”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再进行割补—以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。

刘徽 青朱出入图

利用相似三角形的证法

相似三角形的证明

有许多毕氏定理的证明方式,都是基于相似三角形中两边长的比例

为一直角三角形,直角于(看右图)。从点画上三角形的,并将此高与的交叉点称之为。此新和原本的相似,因为在两个三角形中都有一个直角(这又是由于“高”的定义),而两个三角形都有这个共同角,由此可知第三只角都是相等的。同样道理,也是相似的。这些相似关系衍生出以下的比率关系:

因为

所以

可以写成

综合这两个方程式,我们得到

换句话说:

欧几里得的证法

《几何原本》中的证明

欧几里得的《几何原本》一书中给出毕氏定理的以下证明。设为一直角三角形,其中A为直角。从点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在定理的证明中,我们需要如下四个辅助定理:

  • 如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理)
  • 三角形面积是任一同底同高之平行四边形面积的一半。
  • 任意一个正方形的面积等于其二边长的乘积。
  • 任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。

证明的思路为:把上方的两个正方形,透过等高同底的三角形,以其面积关系,变换成下方两个同等面积的长方形。

证明辅助图2

其证明如下:

  1. 为一直角三角形,其直角为
  2. 其边为、和,依序绘成四方形
  3. 画出过点的平行线。此线将分别与直角相交于
  4. 分别连接,形成两个三角形
  5. 都是直角,因此都是共线的,同理可证共线。
  6. 皆为直角,所以相等于
  7. 因为分别等于,所以必须全等于
  8. 因为在同一直线上,所以四方形必须二倍面积于
  9. 因为在同一直线上,所以正方形必须二倍面积于
  10. 因此四边形必须和有相同的面积=
  11. 同理可证,四边形必须有相同的面积
  12. 把这两个结果相加,
  13. 由于
  14. 由于是个正方形,因此

此证明是于欧几里得几何原本》一书第1.47节所提出的[9]

由于这个定理的证明依赖于平行公理,而且从这个定理可以推出平行公理,很多人质疑平行公理是这个定理的必要条件,一直到十九世纪尝试否定第五公理的非欧几何出现。

图形重新排列证法

以面积减算法证明

此证明以图形重新排列证明。两个大正方形的面积皆为。把四个相等的三角形移除后,左方余下面积为,右方余下面积为,两者相等。证毕。

以重新排列法证明


以动画方式来论证毕氏定理

毕氏定理的逆定理

毕氏定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中为最长边:

  • 如果,则是直角三角形。其中是直角。
  • 如果,则是锐角三角形(若无先前条件为最长边,则该式的成立仅满足是锐角)。
  • 如果, 则是钝角三角形。其中是钝角。

(这个逆定理其实只是余弦定理的一个延伸)

逆定理的证明

毕氏定理的逆定理的证法数明显少于毕氏定理的证法。以下是一些常见证法。

同一法

构造,使

根据毕氏定理,,从而

因此,

余弦定理

根据余弦定理,。由于,故,从而

相似三角形

边上截取点使

中,

从而,,以及

另一方面,,故由知,

因而,,所以

非欧几何

毕氏定理是由欧几里得几何的公理推导出来的,其在非欧几里得几何中不成立的[10],因毕氏定理之成立涉平行公设[11][12]

参考文献

  1. ^ 周髀算經, 文物出版社, 1980-03, 其一,“以为勾的广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。” 
  2. ^ 曲安京. 商高、趙爽與劉徽關於勾股定理的證明 (PDF). [2020-11-08]. (原始内容存档 (PDF)于2021-01-08). 
  3. ^ 蔡聪明. 從畢氏學派到歐氏幾何的誕生. [2013-08-21]. (原始内容存档于2013-11-10). 
  4. ^ 中学数学敎学. 中国人民大学书报资料社. 1984: 49 [2013-08-21]. (原始内容存档于2021-01-08). 
  5. ^ 李信明. 中國數學五千年. 台北: 台湾书店. 1998: 106 [2013-08-20]. ISBN 9575671511. (原始内容存档于2021-01-08). 
  6. ^ 《数学辞海》第六卷,山西敎育出版社, 2002年出版,第618页。
  7. ^ 周髀算经. 商高答周公问曰:“勾广三,股备四,径隅五” 
  8. ^ 刘徽《九章算术注》
  9. ^ 《几何原本》第1.47节页面存档备份,存于互联网档案馆(英文),欧几里德著,2006年12月19日存取
  10. ^ Stephen W. Hawking. cited work. 2005: 4 [2013-10-11]. ISBN 0-7624-1922-9. (原始内容存档于2020-09-02). 
  11. ^ Eric W. Weisstein. CRC concise encyclopedia of mathematics 2nd. 2003: 2147 [2013-10-11]. ISBN 1-58488-347-2. (原始内容存档于2020-08-18). The parallel postulate is equivalent to the Equidistance postulate, Playfair axiom, Proclus axiom, the Triangle postulate and the Pythagorean theorem. 
  12. ^ Alexander R. Pruss. The principle of sufficient reason: a reassessment. Cambridge University Press. 2006: 11 [2013-10-11]. ISBN 0-521-85959-X. (原始内容存档于2020-09-25). We could include...the parallel postulate and derive the Pythagorean theorem. Or we could instead make the Pythagorean theorem among the other axioms and derive the parallel postulate. 

外部链接

参见