跳至內容

File:Color complex plot.jpg

頁面內容不支援其他語言。
這個檔案來自維基共享資源
維基百科,自由的百科全書

原始檔案 (800 × 800 像素,檔案大小:203 KB,MIME 類型:image/jpeg


摘要

描述 Color plot of complex function (x^2-1) * (x-2-I)^2 / (x^2+2+2I), hue represents the argument, sat and value represents the modulus
日期
來源 自己的作品
作者 Claudio Rocchini
授權許可
(重用此檔案)
CC-BY 2.5
其他版本

Source Code

C++

This is the complete C++ source code for image generation (you must change the fun funcion to plot another one). You need some complex class implementation.

#include <complex>
#include <fstream>

using namespace std;
 
const double PI = 3.1415926535897932384626433832795;
const double E  = 2.7182818284590452353602874713527;
 
void SetHSV(double h, double s, double v, unsigned char color[3]) {
    double r, g, b;
    if(s==0)
        r = g = b = v;

    else {
        if(h==1) h = 0;
        double z = floor(h*6); int i = int(z);
        double f = double(h*6 - z);
        double p = v*(1-s);
        double q = v*(1-s*f);
        double t = v*(1-s*(1-f));

        switch(i){
        case 0: r=v; g=t; b=p; break;
        case 1: r=q; g=v; b=p; break;
        case 2: r=p; g=v; b=t; break;
        case 3: r=p; g=q; b=v; break;
        case 4: r=t; g=p; b=v; break;
        case 5: r=v; g=p; b=q; break;
        }
    }
    int c;
    c = int(256*r); if(c>255) c = 255; color[0] = c;
    c = int(256*g); if(c>255) c = 255; color[1] = c;
    c = int(256*b); if(c>255) c = 255; color[2] = c;
}
 
complex<double> fun(complex<double>& c ){
    const complex<double> i(0., 1.);
    return (pow(c,2) -1.) *pow(c -2. -i, 2) /(pow(c,2) +2. +2. *i);
}
 
int main(){
    const int dimx = 800; const int dimy = 800;
    const double rmi = -3; const double rma =  3;
    const double imi = -3; const double ima =  3;
 
    ofstream f("complex.ppm", ios::binary);
    f << "P6" << endl
      << dimx << " " << dimy << endl
      << "255" << endl;
 
    for(int j=0; j < dimy; ++j){
        double im = ima - (ima -imi) *j /(dimy -1);
        for(int i=0; i < dimx; ++i){		
            double re = rma -(rma -rmi) *i /(dimx -1);
            complex<double> c(re, im);
            complex<double> v = fun(c);	
            double a = arg(v);

            while(a<0) a += 2*PI; a /= 2*PI;
            double m = abs(v);
            double ranges = 0;
            double rangee = 1;

            while(m>rangee){
                ranges = rangee;
                rangee *= E;
            }

            double k   = (m-ranges)/(rangee-ranges);
            double sat = k < 0.5 ? k *2: 1 -(k -0.5) *2;
            sat = 1 - pow(1-sat, 3); sat = 0.4 + sat*0.6;

            double val = k < 0.5 ? k *2: 1 -(k -0.5) *2; val = 1 - val;
            val = 1 - pow(1-val, 3); val = 0.6 + val*0.4;

            unsigned char color[3];
            SetHSV(a,sat,val,color);
            f.write((const char*)color,3);
        }
    }
    return 0;
}

C

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>// floor 

/* 
based on 
c++ program from :
[[:File:Color_complex_plot.jpg]]
by  	Claudio Rocchini

gcc d.c -lm -Wall

http://en.wikipedia.org/wiki/Domain_coloring



*/
 
const double PI = 3.1415926535897932384626433832795;
const double E  = 2.7182818284590452353602874713527;
 

/*

complex domain coloring 
Given a complex number z=re^{ i \theta}, 


hue represents the argument ( phase, theta ), 

sat and value represents the modulus

*/
int GiveHSV( double complex z, double HSVcolor[3] )
{
 //The HSV, or HSB, model describes colors in terms of hue, saturation, and value (brightness).
 
 // hue = f(argument(z))
 //hue values range from .. to ..
 double a = carg(z); //
 while(a<0) a += 2*PI; a /= 2*PI;


 // radius of z
 double m = cabs(z); // 
 double ranges = 0;
 double rangee = 1;
 while(m>rangee){
   ranges = rangee;
   rangee *= E;
      }
 double k = (m-ranges)/(rangee-ranges);

 // saturation = g(abs(z))
 double sat = k<0.5 ? k*2: 1 - (k-0.5)*2;
 sat = 1 - pow( (1-sat), 3); 
 sat = 0.4 + sat*0.6;

 // value = h(abs(z))
 double val = k<0.5 ? k*2: 1 - (k-0.5)*2; 
   val = 1 - val;
   val = 1 - pow( (1-val), 3); 
   val = 0.6 + val*0.4;
 
 HSVcolor[0]= a;
 HSVcolor[1]= sat;
 HSVcolor[2]= val;
return 0;
}
  
 
int GiveRGBfromHSV( double HSVcolor[3], unsigned char RGBcolor[3] ) {
        double r,g,b;
        double h; double s; double v;
        h=HSVcolor[0]; // hue 
        s=HSVcolor[1]; //  saturation;
        v = HSVcolor[2]; // = value;

        if(s==0)
                r = g = b = v;
        else {
                if(h==1) h = 0;
                double z = floor(h*6); 
                int i = (int)z;
                double f = (h*6 - z);
                double p = v*(1-s);
                double q = v*(1-s*f);
                double t = v*(1-s*(1-f));
                switch(i){
                        case 0: r=v; g=t; b=p; break;
                        case 1: r=q; g=v; b=p; break;
                        case 2: r=p; g=v; b=t; break;
                        case 3: r=p; g=q; b=v; break;
                        case 4: r=t; g=p; b=v; break;
                        case 5: r=v; g=p; b=q; break;
                }
        }
        int c;
        c = (int)(256*r); if(c>255) c = 255; RGBcolor[0] = c;
        c = (int)(256*g); if(c>255) c = 255; RGBcolor[1] = c;
        c = (int)(256*b); if(c>255) c = 255; RGBcolor[2] = c;
  return 0;
}

int GiveRGBColor( double complex z, unsigned char RGBcolor[3])
{
  static double HSVcolor[3];
  GiveHSV( z, HSVcolor );
  GiveRGBfromHSV(HSVcolor,RGBcolor);
  return 0;
}

//  
double complex fun(double complex c ){
  return (cpow(c,2)-1)*cpow(c-2.0- I,2)/(cpow(c,2)+2+2*I);} // 
 
int main(){
        // screen (integer ) coordinate
        const int dimx = 800; const int dimy = 800;
        // world ( double) coordinate
        const double reMin = -2; const double reMax =  2;
        const double imMin = -2; const double imMax =  2;
        
        static unsigned char RGBcolor[3];
        FILE * fp;
        char *filename ="complex.ppm";
        fp = fopen(filename,"wb");
        fprintf(fp,"P6\n%d %d\n255\n",dimx,dimy);
 


        int i,j;
        for(j=0;j<dimy;++j){
                double im = imMax - (imMax-imMin)*j/(dimy-1);
                for(i=0;i<dimx;++i){            
                        double re = reMax - (reMax-reMin)*i/(dimx-1);
                        double complex z= re + im*I; // 
                        double complex v = fun(z); //     
                        GiveRGBColor( v, RGBcolor);
                        
                        fwrite(RGBcolor,1,3,fp);
                }
        }
        fclose(fp);
        printf("OK - file %s saved\n", filename);

        return 0;
}

授權條款

我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
GNU head 已授權您依據自由軟體基金會發行的無固定段落、封面文字和封底文字GNU自由文件授權條款1.2版或任意後續版本,對本檔進行複製、傳播和/或修改。該協議的副本列在GNU自由文件授權條款中。
w:zh:共享創意
姓名標示 相同方式分享
此檔案採用共享創意 姓名標示-相同方式分享 3.0 未在地化版本授權條款。
您可以自由:
  • 分享 – 複製、發佈和傳播本作品
  • 重新修改 – 創作演繹作品
惟需遵照下列條件:
  • 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
  • 相同方式分享 – 如果您利用本素材進行再混合、轉換或創作,您必須基於如同原先的相同或兼容的條款,來分布您的貢獻成品。
已新增授權條款標題至此檔案,作為GFDL授權更新的一部份。
w:zh:共享創意
姓名標示
此檔案採用創用CC 姓名標示 2.5 通用版授權條款。
您可以自由:
  • 分享 – 複製、發佈和傳播本作品
  • 重新修改 – 創作演繹作品
惟需遵照下列條件:
  • 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
您可以選擇您需要的授權條款。

說明

添加單行說明來描述出檔案所代表的內容
Color wheel graph of the function f(x) = (x^2 − 1)(x + 2 − i)2 / (x^2 + 2 - 2i).

在此檔案描寫的項目

描繪內容

創作作者 Chinese (Hong Kong) (已轉換拼寫)

沒有維基數據項目的某些值

作者姓名字串 繁體中文 (已轉換拼寫):​Claudio Rocchini
維基媒體使用者名稱 繁體中文 (已轉換拼寫):​Rocchini

著作權狀態 繁體中文 (已轉換拼寫)

有著作權 繁體中文 (已轉換拼寫)

GNU自由文檔許可證1.2或更高版本 繁體中文 (已轉換拼寫)

共享創意署名-相同方式共享3.0Unported Chinese (Hong Kong) (已轉換拼寫)

共享創意署名2.5通用版 Chinese (Hong Kong) (已轉換拼寫)

檔案來源 Chinese (Taiwan) (已轉換拼寫)

上傳者的原創作品 繁體中文 (已轉換拼寫)

多媒體型式 繁體中文 (已轉換拼寫)

image/jpeg

校驗和 繁體中文 (已轉換拼寫)

c0f2c797263ef24ef3cb2d39a22f86ee3e4ca071

斷定方法:​SHA-1 中文 (已轉換拼寫)

資料大小 Chinese (Hong Kong) (已轉換拼寫)

208,178 位元組

800 像素

800 像素

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸用戶備⁠註
目前2013年3月22日 (五) 23:06於 2013年3月22日 (五) 23:06 版本的縮圖800 × 800(203 KB)YourmomblahHigher quality
2007年8月7日 (二) 09:46於 2007年8月7日 (二) 09:46 版本的縮圖800 × 800(59 KB)Rocchini{{Information |Description=Color plot of complex function (x^2-1) * (x-2-I)^2 / (x^2+2+2I), hue represents the argument, sat and value represents the modulo |Source=Own work |Date=2007-08-07 |Author=Claudio Rocchini |Permission=CC-BY 2.5 }}

下列2個頁面有用到此檔案:

全域檔案使用狀況

以下其他 wiki 使用了這個檔案:

檢視此檔案的更多全域使用狀況